精英家教网 > 高中数学 > 题目详情
已知数列{an}和{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,数列{bn}的前n和为Sn
(1)求数列{bn}的通项公式;
(2)设Tn=S2n-Sn,求证:Tn+1>Tn
(3)求证:对任意的n∈N*1+
n
2
S2n
1
2
+n
成立.
分析:(1)由题设条件可知bn-bn+1=bnbn+1,从而得
1
bn+1
-
1
bn
=1
,所以数列{
1
bn
}
是首项为1,公差为1的等差数列,由此可知数列{bn}的通项公式.
(2)由题设知Tn=S2n-Sn=1+
1
2
+
1
3
++
1
n
+
1
n+1
+
1
2n
-(1+
1
2
+
1
3
++
1
n
)
=
1
n+1
+
1
n+2
++
1
2n
.故
1
2n+1
1
2n+2
,由此可证明Tn+1>Tn
(3)根据题设条件可以用数学归纳法进行证明.
解答:解:(1)由bn=an-1得an=bn+1代入an-1=an(an+1-1)得bn=(bn+1)bn+1
整理得bn-bn+1=bnbn+1,(1分)
∵bn≠0否则an=1,与a1=2矛盾
从而得
1
bn+1
-
1
bn
=1
,(3分)
∵b1=a1-1=1
∴数列{
1
bn
}
是首项为1,公差为1的等差数列
1
bn
=n
,即bn=
1
n
.(4分)
(2)∵Sn=1+
1
2
+
1
3
++
1
n

∴Tn=S2n-Sn=1+
1
2
+
1
3
++
1
n
+
1
n+1
+
1
2n
-(1+
1
2
+
1
3
++
1
n
)

=
1
n+1
+
1
n+2
++
1
2n
(6分)
∵2n+1<2n+2∴
1
2n+1
1
2n+2

Tn+1-Tn
1
2n+2
+
1
2n+2
-
1
n+1
=0

∴Tn+1>Tn.(8分)
(3)用数学归纳法证明:
①当n=1时1+
n
2
=1+
1
2
S2n=1+
1
2
1
2
+n=
1
2
+1
,不等式成立;(9分)
②假设当n=k(k≥1,k∈N*)时,不等式成立,即1+
k
2
S2k
1
2
+k
,那么当n=k+1时S2k+1=1+
1
2
++
1
2k
++
1
2k+1
≥1+
k
2
+
1
2k+1
++
1
2k+1
>1+
k
2
+
1
2k+1
++
1
2k+1
2k
=1+
k
2
+
1
2
=1+
k+1
2
(12分)S2k+1=1+
1
2
++
1
2k
++
1
2k+1
1
2
+k+
1
2k+1
++
1
2k+1
1
2
+k+
1
2k
++
1
2k
2k

=
1
2
+(k+1)

∴当n=k+1时,不等式成立
综①②知对任意的n∈N*,不等式成立.(14分)
点评:本题考查数列的综合应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a=1,a1=2,a2>0,bn=
a1an+1
(n∈N*)
.且{bn}是以
a为公比的等比数列.
(Ⅰ)证明:aa+2=a1a2
(Ⅱ)若a3n-1+2a2,证明数例{cx}是等比数例;
(Ⅲ)求和:
1
a1
+
1
a2
+
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足a1=m,an+1an+n,bn=an-
2n
3
+
4
9

(1)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列;
(2)当λ=-
1
2
时,试判断{bn}是否为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和等比数列{bn}满足:a1=b1=4,a2=b2=2,a3=1,且数列{an+1-an}是等差数列,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)问是否存在k∈N*,使得ak-bk∈(
12
,3]
?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ为实数,且λ≠-18,n为正整数.
(Ⅰ)求证:{bn}是等比数列;
(Ⅱ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)已知数列{an}和{bn}满足a1=1且bn=1-2anbn+1=
bn
1-4 
a
2
n

(I)证明:数列{
1
an
}是等差数列,并求数列{an}的通项公式;
(Ⅱ)求使不等式(1+a1)(1+a2)…(1+an)≥k
1
b2b3bnbn+1 
对任意正整数n都成立的最大实数k.

查看答案和解析>>

同步练习册答案