【题目】在如图所示的几何体中,四边形
是正方形,
平面
,
分别为
的中点,且
.
![]()
(1)求证:平面
平面
;
(2)求证:平面
平面
;
(3)求三棱锥
与四棱锥
的体积之比.
【答案】(1)(2)证明过程详见解析;(3)1:4
【解析】试题分析:(1)欲证平面
平面
,根据面面垂直的判定定理可知在平面
内一直线与平面
垂直,而根据线面垂直的判定定理可知
平面
平面
,满足定理条件;(2)证明
,利用线面平行的判定定理,即可证明
平面
;(3)不妨设
,求出
,得到
,求出PD,根据
面
,所以
即为点
到平面
的距离,根据三棱锥的体积公式求出体积得到
的比值.
试题解析:
(1)证明:∵
分别为
的中点,
∴
,
又∵四边形
是正方形,
∴
,∴
,
∵
在平面
外,
在平面
内,
∴
平面
,
平面
,
又∵
都在平面
内且相交,
∴平面
平面
.
(2)证明:由已知
平面
,
∴
平面
.
又
平面
,∴
.
∵四边形
为正方形,∴
,
又
,∴
平面
,
在
中,∵
分别为
的中点,
∴
,∴
平面
.
又
平面
,∴平面
平面
.
(3)解:∵
平面
,四边形
为正方形,不妨设
,则
.
∵
平面
,且
,
∴
即为点
到平面
的距离,
∴
.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acos θ(a>0),过点P(-2,-4)的直线l:
(t为参数)与曲线C相交于M,N两点.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,椭圆
的左、右焦点分别为
,
也是抛物线
的焦点,点M为
在第一象限的交点,且
.
(1)求
的方程;
(2)平面上的点N满足
,直线
,且与
交于A,B两点,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=2,C=
.
(1)若△ABC的面积等于
,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某区工商局、消费者协会在
月
号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取
名群众,按他们的年龄分组:第
组
,第
组
,第
组
,第
组
,第
组
,得到的频率分布直方图如图所示.
![]()
(Ⅰ)若电视台记者要从抽取的群众中选
人进行采访,求被采访人恰好在第
组或第
组的概率;
(Ⅱ)已知第
组群众中男性有
人,组织方要从第
组中随机抽取
名群众组成维权志愿者服务队,求至少有两名女性的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
=(sinx,cosx),
=(cosφ,sinφ)(|φ|<
).函数
f(x)=![]()
且f(
-x)=f(x).
(Ⅰ)求f(x)的解析式及单调递增区间;
(Ⅱ)将f(x)的图象向右平移
单位得g(x)的图象,若g(x)+1≤ax+cosx在x∈[0,
]上恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的参数方程为
(
为参数),当
时,曲线
上对应的点为
.以原点
为极点,以
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(I)求曲线
的普通方程和曲线
的直角坐标方程;
(II)设曲线
与
的公共点为
,
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com