精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值
(1)求函数f(x)的解析式;
(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的范围.
分析:(1)解析式中有两个参数,故需要得到两个方程求参数,由于函数f(x)=ax3+bx2-3x在x=±1处取得极值,由极值存在的条件恰好可以得到两个关于参数的两个方程,由此解析式易求.
(2)欲证对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4,可以求出函数在区间[-1,1]上的最值,若最大值减去最小值的差小于等于4,则问题得到证明,故问题转化为研究函数在区间[-1,1]上的单调性求最值的问题.
(3)由于点A(1,m)(m≠-2),验证知此点不在函数图象上,可设出切点坐标M(x0,y0),然后用两种方式表示出斜率,建立关于切点横坐标的方程2x03-3x02+m+3=0,再借助函数的单调性与极值确定其有三个解的条件即可.
解答:解:(1)f′(x)=3ax2+2bx-3,依题意,f′(1)=f′(-1)=0,解得a=1,b=0.
∴f(x)=x3-3x
(2)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1),
当-1<x<1时,f′(x)<0,故f(x)在区间[-1,1]上为减函数,
fmax(x)=f(-1)=2,fmin(x)=f(1)=-2
∵对于区间[-1,1]上任意两个自变量的值x1,x2
都有|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|
|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4
(3)f′(x)=3x2-3=3(x+1)(x-1),
∵曲线方程为y=x3-3x,∴点A(1,m)不在曲线上.
设切点为M(x0,y0),切线的斜率为3(
x
2
0
-1)=
x
3
0
-3
x
 
0
-m
x
 
0
-1
(左边用导数求出,右边用斜率的两点式求出),
整理得2x03-3x02+m+3=0.
∵过点A(1,m)可作曲线的三条切线,故此方程有三个不同解,下研究方程解有三个时参数所满足的条件
设g(x0)=2x03-3x02+m+3,则g′(x0)=6x02-6x0
由g′(x0)=0,得x0=0或x0=1.
∴g(x0)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减.
∴函数g(x0)=2x03-3x02+m+3的极值点为x0=0,x0=1
∴关于x0方程2x03-3x02+m+3=0有三个实根的充要条件是
g(0)>0
g(1)<0
,解得-3<m<-2.
故所求的实数a的取值范围是-3<m<-2.
点评:本题考点是利用导数研究函数的单调性,考查了函数极值存在的条件,利用导数求函数最值的方法以及导数研究函数在某点切线的问题,本题涉及到了求导公式,求最值的方法,导数的几何意义等,综合性强,难度较大,解题时注意体会.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案