【题目】如图,在正方体ABCD-ABCD中,平面
垂直于对角线AC,且平面
截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S,周长为l,则( )
![]()
A. S为定值,l不为定值 B. S不为定值,l为定值
C. S与l均为定值 D. S与l均不为定值
【答案】B
【解析】
将正方体切去两个正三棱锥
和
,得到一个几何体
,
是以平行平面
和
为上下底,每个侧面都是直角等腰三角形,截面多边形的每一条边分别与
的底面上的一条边平行,设正方体棱长为
,
,可求得六边形的周长为
与
无关,即周长为定值;当
都在对应棱的中点时,
是正六边形,计算可得面积
,当
无限趋近于
时,
的面积无限趋近于
,从而可知
的面积一定会发生变化。
设平面
截得正方体的六个表面得到截面六边形为
,
与正方体的棱的交点分别为
(如下图),
将正方体切去两个正三棱锥
和
,得到一个几何体
,
是以平行平面
和
为上下底,每个侧面都是直角等腰三角形,截面多边形
的每一条边分别与
的底面上的一条边平行,设正方体棱长为
,
,则
,
,故
,同理可证明
,故六边形
的周长为
,即周长为定值;
当
都在对应棱的中点时,
是正六边形,计算可得面积
,三角形
的面积为
,当
无限趋近于
时,
的面积无限趋近于
,故
的面积一定会发生变化,不为定值。
故答案为B.
科目:高中数学 来源: 题型:
【题目】若对满足条件3x+3y+8=2xy(x>0,y>0)的任意x、y,(x+y)2﹣a(x+y)+16≥0恒成立,则实数a的取值范围是( )
A.(﹣∞,8]B.[8,+∞)C.(﹣∞,10]D.[10,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知五边形ABECD由一个直角梯形ABCD与一个等边三角形BCE构成,如图1所示,AB丄BC,AB//CD,且AB=2CD。将梯形ABCD沿着BC折起,如图2所示,且AB丄平面BEC。
![]()
(1)求证:平面ABE丄平面ADE;
(2)若AB=BC,求二面角A-DE-B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一块半径为
,圆心角为
的扇形钢板,需要将它截成一块矩形钢板,分别按图1和图2两种方案截取(其中方案二中的矩形关于扇形的对称轴对称).
![]()
图1:方案一 图2:方案二
(1)求按照方案一截得的矩形钢板面积的最大值;
(2)若方案二中截得的矩形
为正方形,求此正方形的面积;
(3)若要使截得的钢板面积尽可能大,应选择方案一还是方案二?请说明理由,并求矩形钢板面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图已知椭圆
,
是长轴的一个端点,弦
过椭圆的中心
,且
,
.
![]()
(Ⅰ)求椭圆的方程:
(Ⅱ)设
为椭圆上异于
且不重合的两点,且
的平分线总是垂直于
轴,是否存在实数
,使得
,若存在,请求出
的最大值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
,
分别是椭园C:
的左、右焦点,且椭圆C上的点到
的距离的最小值为
,点M,N是椭圆C上位于x轴上方的两点,且向量
与向量
平行.
求椭圆C的方程;
当
时,求
的面积;
当
时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某些竞赛活动中,选手的最终成绩是将前面所有轮次比赛成绩求算术平均获得的.同学们知道这样一个事实:在所有轮次的成绩中,如果由高到低依次去掉一些高分,那么平均分降低;反之,如果由低到高依次去掉一些低分,那么平均分提高. 这两个事实可以用数学语言描述为:若有限数列
满足
,且
不全相等,则(1)_______;(2)_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com