精英家教网 > 高中数学 > 题目详情
注意:第(3)小题平行班学生不必做,特保班学生必须做.
已知椭圆的焦点在x轴上,它的一个顶点恰好是抛物线x2=4y的焦点,离心率e=
2
5
,过椭圆的右焦点F作与坐标轴不垂直的直线l,交椭圆于A、B两点.
(1)求椭圆的标准方程;
(2)设点M(m,0)是线段OF上的一个动点,且(
MA
+
MB
)⊥
AB
,求m的取值范围;
(3)设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C、B、N三点共线?若存在,求出定点N的坐标,若不存在,请说明理由.
分析:(1)设出椭圆的方程,把抛物线方程整理成标准方程,求得焦点的坐标,进而求得椭圆的一个顶点,即b,利用离心率求得a和c关系进而求得a,则椭圆的方程可得.
(2)设直线l的方程为y=k(x-2)(k≠0),代入椭圆方程,利用韦达定理结合向量的数量积公式,即可求得m的取值范围;
(3)确定直线BC的方程,令y=0,结合A,B在l的方程y=k(x-2)上,即可求得结论.
解答:解:(1)设椭圆C的方程为
x2
a2
+
y2
b2
=1
(a>b>0),
抛物线方程化为x2=4y,其焦点为(0,1)则椭圆C的一个顶点为(0,1),即b=1
由e=
c
a
=
a2-b2
a
=
2
5
,∴a2=5,
所以椭圆C的标准方程为
x2
5
+y2=1;
(2)由(1)得F(2,0),则0≤m≤2
设直线l的方程为y=k(x-2)(k≠0),代入椭圆方程,消去y可得(5k2+1)x2-20k2x+20k2-5=0
设A(x1,y1),B(x2,y2),则x1+x2=
20k2
5k2+1
,x1x2=
20k2-5
5k2+1

∴y1+y2=k(x1+x2-4),y1-y2=k(x1-x2
(
MA
+
MB
)⊥
AB

(
MA
+
MB
)•
AB
=0
∴(x1+x2-2m)(x2-x1)+(y2-y1)(y1+y2)=0
20k2
5k2+1
-2m-
4k2
5k2+1
=0
k2=
m
8-5m

k2=
m
8-5m
>0

0<m<
8
5

∴当0<m<
8
5
时,(
MA
+
MB
)⊥
AB

(3)在x轴上存在一个定点N,使得C、B、N三点共线
由题意C(x1,-y1),∴直线BC的方程为y+y1=
y2+y1
x2-x1
(x-x1)

令y=0,则x=
y1x2+y2x1
y2+y1

∵A,B在l的方程y=k(x-2)上
∴y1=k(x1-2),y2=k(x2-2)
∴x=
y1x2+y2x1
y2+y1
=
2kx1x2-2k(x1+x2)
k(x1+x2)-4k
=
2k×
20k2-5
5k2+1
-2k×
20k2
5k2+1
20k2
5k2+1
-4k
=
5
2

∴在x轴上存在一个定点N(
5
2
,0),使得C、B、N三点共线.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•崇明县一模)已知:函数fn(x)(n∈N*)的定义域为(-∞,0)∪(0,+∞),其中f1(x)=x+1+
1
x
,并且当n>1且n∈N*时,满足fn(x)-fn-1(x)=xn+
1
xn

(1)求函数fn(x)(n∈N*)的解析式;
(2)当n=1,2,3时,分别研究函数fn(x)的单调性与值域;
(3)借助(2)的研究过程或研究结论,提出一个类似(2)的研究问题,并写出问题的研究过程与研究结论.
【第(3)小题将根据你所提出问题的质量,以及解决所提出问题的情况进行分层评分】

查看答案和解析>>

科目:高中数学 来源:2010年福建省高一上学期期中考试数学卷 题型:解答题

(本小题满10分)注意:第(3)小题平行班学生不必做,特保班学生必须做。对于函数,若存在x0∈R,使成立,则称x0的不动点。已知函数a≠0)。

(1)当时,求函数的不动点;

(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

(3)(特保班做) 在(2)的条件下,若图象上AB两点的横坐标是函数的不动点,且AB两点关于点对称,求的的最小值。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满10分)注意:第(3)小题平行班学生不必做,特保班学生必须做。

对于函数,若存在x0∈R,使成立,则称x0的不动点。

已知函数a≠0)。

(1)当时,求函数的不动点;

(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

(3)(特保班做) 在(2)的条件下,若图象上AB两点的横坐标是函数的不动点,且AB两点关于点对称,求的的最小值。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省三明一中高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

注意:第(3)小题平行班学生不必做,特保班学生必须做.
已知椭圆的焦点在x轴上,它的一个顶点恰好是抛物线x2=4y的焦点,离心率,过椭圆的右焦点F作与坐标轴不垂直的直线l,交椭圆于A、B两点.
(1)求椭圆的标准方程;
(2)设点M(m,0)是线段OF上的一个动点,且,求m的取值范围;
(3)设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C、B、N三点共线?若存在,求出定点N的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案