精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的多面体ABCDEABDEABAD,△ACD是正三角形.ADDE2AB2EC2FCD的中点.

1)求证AF∥平面BCE

2)求直线AD与平面BCE所成角的正弦值.

【答案】(1)证明见解析;(2)

【解析】

1)以A为原点,在平面ACD中,过AAD的垂线为x轴,ADy轴,ABz轴,建立空间直角坐标系,求出平面BCE的法向量,再证得即可;

2)求出,利用数量积求得夹角即可

1)证明:以A为原点,在平面ACD中,过AAD的垂线为x轴,ADy轴,ABz轴,建立空间直角坐标系,

A0,0,0,C,D0,2,0,F,,0,B0,0,1,E0,2,2,

所以,,0),),0,2,1),

设平面BCE的法向量x,y,z),

,取y1,得,1,﹣2),

0,AF平面BCE,

AF平面BCE

2)解:0,2,0),平面BCE的法向量),

设直线AD与平面BCE所成角为

∴直线AD与平面BCE所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,ABCDADDCCB1,∠BCD120°,四边形BFED为矩形,平面BFED⊥平面ABCDBF1.

(1)求证:AD⊥平面BFED

(2)P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为为椭圆上两点,圆.

(1)若轴,且满足直线与圆相切,求圆的方程;

(2)若圆的半径为2,点满足,求直线被圆截得弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),上的动点,点满足,点的轨迹为曲线

(1)求曲线的直角坐标方程;

(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)求时,的单调区间;

2)若存在,使得对任意的,都有,求的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论上的单调性.

(2)当时,若上的最大值为,讨论:函数内的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定无穷数列,若无穷数列满足:对任意的,都有,则称“比较接近”.

(1)设是首项为1,公比为的等比数列,,判断数列是否与“比较接近”;

(2)设数列的前四项为:是一个与比较接近的数列,记集合,求中元素的个数

(3)已知是公差为的等差数列,若存在数列满足:较接近,且在中至少有1009个为正,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于两点,设点,已知,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在(0+∞)上的可导函数,满足f1)=2,且,则不等式fx)﹣e33x1的解集为(  )

A.01B.0eC.1+∞D.e+∞

查看答案和解析>>

同步练习册答案