精英家教网 > 高中数学 > 题目详情
设f(x)是定义在R上的奇函数,且f(x+4)=f (x),若-1≤x≤1时,f(x)=x,则(  )
分析:利用已知条件中的函数的周期把所求函数的函数值转化到已知区间上,然后结合已知函数解析式即可求解,进而可判断大小
解答:解:∵f(x+4)=f (x)且-1≤x≤1时,f(x)=x,
∴f(43)=f(-1)=-1,f(60)=f(0)=0,f(53)=f(1)=1
∴f(43)<f(60)<f(53)
故选B
点评:本题主要考查了利用函数的周期性求解函数的函数值,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、设f(x)是定义在R上的奇函数,且f(3)+f(-2)=2,则f(2)-f(3)=
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,当x≥0时,f(x)=2x+2x-1,则f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且f(1)=0,当x>0时,有f(x)>xf′(x)恒成立,则不等式xf(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)满足f(1-x)=f(x),且f( 
1
2
 )=2
,则f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为(  )
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步练习册答案