精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求的图象在处的切线方程;

2)当时,求证:上有唯一零点.

【答案】1;(2)证明见解析

【解析】

(1)当时,函数,分别求出的值,结合导数的几何意义,可求出的图象在处的切线方程;

(2)对函数求导,判断单调性可知上单调递减,在上单调递增,进而可知,然后构造函数,进而可证明,即,进而由,证明,又,结合单调性可知上有唯一零点.

1)当时,函数,定义域为.

,则.

的图象在处的切线方程为,即.

2)证明:.

因为,令,得;令,得.

上单调递减,在上单调递增.

所以.

.

显然上单调递减.

.

所以,即.

.

.

,则,所以上单调递增,

,所以,故

所以上单调递增,,所以.

,结合单调性可知上有唯一零点,命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在AB实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在AB试验地随机抽选各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.

1)求图中a的值,并求综合评分的中位数;

2)用样本估计总体,以频率作为概率,若在AB两块实验地随机抽取3棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;

3)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.

优质花苗

非优质花苗

合计

甲培育法

20

乙培育法

10

合计

附:下面的临界值表仅供参考.

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与过其右焦点F10)的直线交于不同的两点AB,线段AB的中点为D,且直线l与直线OD的斜率之积为.

1)求C的方程;

2)设椭圆的左顶点为MkMAkMB分别表示直线MAMB的斜率,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中为了了解高三学生每天自主参加体育锻炼的情况,随机抽取了100名学生进行调查,其中女生有55名.下面是根据调查结果绘制的学生自主参加体育锻炼时间的频率分布直方图:

将每天自主参加体育锻炼时间不低于40分钟的学生称为体育健康类学生,已知体育健康类学生中有10名女生.

1)根据已知条件完成下面列联表,并据此资料你是否有的把握认为达到体育健康类学生与性别有关?

非体育健康类学生

体育健康类学生

合计

男生

女生

合计

2)将每天自主参加体育锻炼时间不低于50分钟的学生称为体育健康类学生,已知体育健康类学生中有2名女生,若从体育健康类学生中任意选取2人,求至少有1名女生的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形且,侧面底面,且侧面是正三角形,中点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形且,侧面底面,且侧面是正三角形,中点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意程度进行调查,并随机抽取了其中30名员工(16名女工,14名男工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根据以上数据,估计该企业得分大于45分的员工人数;

(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平局得分为 “满意”,否则为 “不满意”,请完成下列表格:

“满意”的人数

“不满意”的人数

合计

女员工

16

男员工

14

合计

30

(3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?

参考数据:

P(K2K)

0.10

0.050

0.025

0.010

0.001

K

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数), 椭圆C的参数方程为为参数)。在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(2,

(1)求椭圆C的直角坐标方程和点A在直角坐标系下的坐标

(2)直线l与椭圆C交于P,Q两点,求△APQ的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足以下三个条件:①对于任意的,都有;②对于任意的都有③函数的图象关于y轴对称,则下列结论中正确的是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案