精英家教网 > 高中数学 > 题目详情
19.已知P1(x1,y1),P2(x2,y2)是斜率为k的直线上的两点,
求证:|P1P2|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$.

分析 由斜率公式得y1-y2=k(x1-x2),由此利用完全平方式能证明|P1P2|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$.

解答 证明:∵P1(x1,y1),P2(x2,y2)是斜率为k的直线上的两点,
∴$k=\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,∴y1-y2=k(x1-x2),
∴|P1P2|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$
=$\sqrt{({x}_{1}-{x}_{2})^{2}+[k({x}_{1}-{x}_{2})]^{2}}$
=$\sqrt{(1+{k}^{2})({x}_{1}-{x}_{2})^{2}}$
=$\sqrt{1+{k}^{2}}•|{x}_{1}-{x}_{2}|$
=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$.
∴|P1P2|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$.

点评 本题考查两点间距离公式的证明,是基础题,解题时要注意直线斜率公式和完全平方式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.直线l过直线x+y-2=0与x-y-4=0的交点且平行与直线x-3y-1=0,求直线l的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.有编号为1,2,3,4,5的五个人,要住进编号1,2,3,4,5的五个房间,要求每人一间,每间一人,且人与房间的编号不能相同,有多少种不同的住法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解:2cos50°cos70°-cos20°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法中正确的是(  )
A.120°角与420°角的终边相同
B.若α是锐角.则2α是第二象限的角
C.-240°角与480°角都是第三象限的角
D.60°角与-420°角的终边关于x轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,射线OA,OB与x轴的正方向分别成45°与30°的角,过点P(1,0)的直线与两射线分别交于C,D,若线段CD的中点恰好在直线y=$\frac{1}{2}$x上,求CD所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆方程为$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{m}^{2}}$=1,焦点在x轴上,焦距等于4,则m的值为(  )
A.2B.±2C.2$\sqrt{3}$D.±2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式$\frac{{x}^{2}+1}{3x-2}$<0的解集是(-∞,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系中,参数方程$\left\{\begin{array}{l}{x=co{s}^{2}θ}\\{y=si{n}^{2}θ}\end{array}\right.$(θ为参数)对应的曲线为线段.

查看答案和解析>>

同步练习册答案