精英家教网 > 高中数学 > 题目详情

(满分12分)
某市居民生活用水标准如下:

用水量t(单位:吨)
每吨收费标准(单位:元)
不超过2吨部分
m
超过2吨不超过4吨部分
3
超过4吨部分
n
已知某用户1月份用水量为3.5吨,缴纳水费为7.5元;2月份用水量为6吨,缴纳水费为21元.设用户每月缴纳的水费为y元.
(1)写出y关于t的函数关系式;
(2)某用户希望4月份缴纳的水费不超过18元,求该用户最多可以用多少吨水?

(1)  (2) 5.5

解析试题分析:(1)由已知   …………5分
当t=3.5时,y=7.5;当t=6时,y=21.
代入得:   解得:m=1.5,n=6    …………8分
∴y关于t的函数关系式为:     …………9分
(2)令6t-15≤18,解得t≤5.5
∴该用户最多用水量为5.5吨.                      …………12分
考点:分段函数求解析式
点评:本题为分段函数应用题,在求解时分析清楚题意,设出正确的分段函数解析式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)求函数的定义域;
(2)判断函数的奇偶性,并予以证明;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)
如图,开发商欲对边长为的正方形地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路(点分别在上),根据规划要求的周长为

(1)设,求证:
(2)欲使的面积最小,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了应对国际原油的变化,某地建设一座油料库。现在油料库已储油料吨,计划正式运营后的第一年进油量为已储油量的,以后每年的进油量为上一年年底储油量的,且每年运出吨,设为正式运营第n年年底的储油量。(其中
(1)求的表达式
(2)为应对突发事件,该油库年底储油量不得少于吨,如果吨,该油库能否长期按计划运营?如果可以请加以证明;如果不行请求出最多可以运营几年。(取

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分6分)
(1)计算
(2)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
已知函数f (x)=| xa | + | x + 2 |(a为常数,且aR).
(Ⅰ)若函数f (x)的最小值为2,求a的值;
(Ⅱ)当a=2时,解不等式f (x)6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)设,若方程有两个均小于2的不同的实数根,则此时关于的不等式是否对一切实数都成立?并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数是奇函数:
(1)求实数的值; 
(2)证明在区间上的单调递减
(3)已知且不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案