精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,
(1)若不等式f(x)>4的解集为{x|x<-3或x>1},求F(x)的表达式;
(2)在(1)的条件下,当x∈[-1,1]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设m•n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零?
【答案】分析:(1)先由已知不等式ax2+bx-3>0的解集为{x|x<-3或x>1},故a>0,且方程ax2+bx-3=0的两根结合韦达定理,得a,b的值即可写出F(x)的表达式;
(2)由于g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1=,利用二次函数的图象与性质得出实数k的取值范围即可;
(3)根据f(x)是偶函数得到:,再结合题中条件:m•n<0,设m>n,则n<0.又m+n>0,m>-n>0,计算出|m|>0,从而F(m)+F(n)能大于零.
解答:解:(1)由已知不等式ax2+bx-3>0的解集为{x|x<-3或x>1},故a>0,且方程ax2+bx-3=0的两根为-3,1,由韦达定理,得解得a=1,b=2.因此,
(2)∵g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1=
时,即k≥4或k≤0时,g(x)是单调函数.
(3)∵f(x)是偶函数∴f(x)=ax2+1,
∵m•n<0,设m>n,则n<0.又m+n>0,m>-n>0,
∴|m|>|-n|F(m)+F(n)=f(m)-f(n)=(am2+1)-an2-1=a(m2-n2)>0,
∴F(m)+F(n)能大于零.
点评:本小题主要考查函数单调性的应用、函数奇偶性的应用、函数解析式的求解及常用方法等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案