上海市闵行区2008学年第二学期高三年级质量调研考试
数学试卷(文理科)
考生注意:
1.答卷前,考生务必在答题纸上将学校、班级、考号、姓名等填写清楚.
2.本试卷共有21道题,满分150分,考试时间120分钟.
一. 填空题(本大题满分60分)本大题共有12题,考生应在答题纸上相应编号的空格内
直接填写结果,每个空格填对得5分,否则一律得零分.
1.方程
的解
.
2.(理)若直线
经过点
,且法向量为
,则直线
的方程是
(结果用直线的一般式表示).
(文)计算
.
3.(理)若函数
则
.
(文)若
,则
.
4.(理)若
是偶函数,则实数
.
(文)若直线
经过点
,且法向量为
,则直线
的方程是
(结果用直线的一般式表示).
5.(理)在极坐标系中,两点的极坐标分别为
、
,
为极点,则
面积为
.
(文)若
,则函数
的最大值为
.
6.(理)无穷数列
的各项和为 .
(文)若
是偶函数,则实数
.
7.根据右面的框图,该程序运行后输出的结果为 .
8.(理)已知地球半径为
公里,位于赤道上两点
、
分别在东经
和
上,则
、
两点的球面距离为
公里(
取3.14,结果精确到1公里).
(文)已知一个圆柱的侧面展开图是边长为4的正方形,则该圆柱的体积为 .
9.(理)一个袋子里装有外形和质地一样的5个白球、3个绿球和2个红球,将它们充分混合后,摸得一个白球计1分,摸得一个绿球计2分,摸得一个红球计4分,记随机摸出一个球的得分为
,则随机变量
的数学期望
.
(文)在航天员进行的一项太空试验中,先后要实施
道程序,则满足程序
只能出现在最后一步,且程序
和程序
必须相邻实施的概率为
.
10.(理)若关于
的方程
在
上有解,则实数
的取值范围是 .
(文)若关于
的方程
在
上有解,则实数
的取值范围是 .
11.(理)对于任意
,不等式
恒成立,则实数
的范围为 .
(文)对于任意
,不等式
恒成立,则实数
的最小值为 .
12.(理)通过研究函数
在实数范围内的零点个数,进一步研究可得
在实数范围内的零点个数为
.
(文)通过研究方程
在实数范围内的解的个数,进一步研究可得函数
在实数范围内的零点个数为
.
二. 选择题(本大题满分16分)本大题共有4题,每题只有一个正确答案,选对得4分,答案代号必须填在答题纸上.注意试题题号与答题纸上相应编号一一对应,不能错位.
13.(理)“
”是“
”的
[答]( )
(A) 充分非必要条件. (B) 必要非充分条件.
(C) 充要条件. (D) 既非充分也非必要条件.
(文)“
”是“
”的
[答]( )
(A) 充分非必要条件. (B) 必要非充分条件.
(C) 充要条件. (D) 既非充分也非必要条件.
14.(理)若
,且
,则
的取值范围是 [答]( )
(A)
.
(B)
. (C)
. (D)
.
(文)若
,且
,则
的最大值是
[答]( )
(A) 2. (B) 3. (C) 4. (D) 5.
15.函数
图像上的动点
到直线
的距离为
,点
到
轴的距离为
,则
[答]( )
(A) 5. (B)
.
(C)
.
(D) 不确定的正数.
16.(理)已知椭圆
(
为参数)上的点
到它的两个焦点
、
的距离之比
,且
,则
的最大值为[答]( )
(A)
. (B)
. (C)
. (D)
.
(文)椭圆
上的点
到它的两个焦点
、
的距离之比
,且
,则
的最大值为 [答]( )
(A)
. (B)
. (C)
. (D)
.
三. 解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸上与题号对应的区域内写出必要的步骤.
17.(本题满分12分)
(理)已知
的最大值为2,求实数
的值.
(文)已知
的最大值为2,求实数
的值.

18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
(理)在长方体
中,
,
,
,点
在棱
上移动.
(1)探求
等于何值时,直线
与平面
成
角;
(2)点
移动为棱
中点时,求点
到平面
的距离.
(文)如图几何体是由一个棱长为2的正方体
与一个侧棱长为2的正四棱锥
组合而成.
(1)求该几何体的主视图的面积;
(2)若点
是棱
的中点,求异面直线
与
所成角的大小(结果用反三角函数表示).
19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
课本中介绍了诺贝尔奖,其发放方式为:每年一次,把奖金总金额平均分成6份,奖励在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出了最有益贡献的人.每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息用于增加基金总额,以便保证奖金数逐年递增.资料显示:1998年诺贝尔奖发奖后基金总额已达
万美元,假设基金平均年利率为
.
(1)请计算:1999年诺贝尔奖发奖后基金总额为多少万美元?当年每项奖金发放多少万美元(结果精确到1万美元)?
(2)设
表示为第
(
)年诺贝尔奖发奖后的基金总额(1998年记为
),试求函数
的表达式.并据此判断新民网一则新闻 “2008年度诺贝尔奖各项奖金高达168万美元”是否与计算结果相符,并说明理由.
20.(本题满分17分)本题共有3个小题,第1小题满分4分,第2小题满分6分、第3小题满分7分.
(理)斜率为1的直线过抛物线
的焦点,且与抛物线交于两点
、
.
(1)若
,求
的值;
(2)将直线
按向量
平移得直线
,
是
上的动点,求
的最小值.
(3)设
,
为抛物线
上一动点,是否存在直线
,使得
被以
为直径的圆截得的弦长恒为定值?若存在,求出
的方程;若不存在,说明理由.
(文)斜率为1的直线过抛物线
的焦点,且与抛物线交于两点
、
.
(1)求
的值;
(2)将直线
按向量
平移得直线
,
是
上的动点,求
的最小值.
(3)设
,
为抛物线
上一动点,证明:存在一条定直线
:
,使得
被以
为直径的圆截得的弦长为定值,并求出直线
的方程.
21.(本题满分17分)(理)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分8分.第3小题根据不同思维层次表现予以不同评分.
对于数列
(1)当
满足
(常数)且
(常数),
证明:
为非零常数列.
(2)当
满足
(常数)且
(常数),
判断
是否为非零常数列,并说明理由.
(3)对(1)、(2)等式中的指数进行推广,写出推广后的一个正确结论,并说明理由.
(文)本题共有3个小题,第1、2小题满分各5分,第3小题满分7分.第3小题根据不同思维层次表现予以不同评分.
对于数列
(1)当
满足
(常数)且
(常数),
证明:
为非零常数列.
(2)当
满足
(常数)且
(常数),
判断
是否为非零常数列,并说明理由.
(3)对(1)、(2)等式中的指数进行推广,写出推广后的一个正确结论(不用说明理由).
闵行区2008学年第二学期高三年级质量调研考试
一、填空题:(每题5分)
1.
; 2. 理:
、文:
; 3. 理:0、文:0;
4.理:0、文:
; 5.理:
;文:40; 6.理:
、文:0;
7.
;
8.理:
、文:
; 9.理:
、文:
;
10.理:
、文:
; 11.理:
、文:0; 12.理:当
为大于3的偶数时,
个零点;当
为大于或等于3的奇数时,
个零点、文:
个零点.
二、选择题:(每题4分)13.
; 14.
; 15.
; 16. 
三、解答题:
17.(本题满分12分)
(理) 解:按行列式展开可得:
(3分)
(6分)
,(9分)
从而可得:
.(12分)
(文) 解:按行列式展开可得
(3分)
(6分)
由题意得:
(9分)
.(12分)
18.(本题满分14分)
(理)解:(1)法一:长方体
中,因为点E在棱AB上移动,所以
平面
,从而
为直线
与平面
所成的平面角,(3分)
中,
. (6分)
法二:以
为坐标原点,射线DA、DC、DD1依次为x、y、z轴,建立空间直角坐标系,则点
,平面
的法向量为
,设
,得
,(3分)由
,得
,故
(6分)
(2)以
为坐标原点,射线DA、DC、DD1依次为x、y、z轴,建立空间直角坐标系,则点
,
,
,
从而
,
,
(3分)
设平面
的法向量为
,由

令
, (5分)
所以点
到平面
的距离为
. (8分)
(文)解:(1)画出其主视图(如下图),
可知其面积
为三角形与正方形面积之和.
在正四棱锥
中,棱锥的高
, (2分)
. (6分)
(2)取
中点
,联结
,
则
为异面直线
与
所成角. (2分)
在
中,
,
又在正四棱锥
中,斜高为
, (4分)
由余弦定理可得
(6分)
所以
,异面直线
与
所成的角为
. (8分)
19.(本题满分14分)
解:(1)由题意知:1999年诺贝尔奖发奖后基金总额为

万美元; (3分)
每项奖金发放额为
万美元; (6分)
(2)由题意知:
,

,



所以,
(
). (5分)
2007年诺贝尔奖发奖后基金总额为
2008年度诺贝尔奖各项奖金额为
万美元,
与168万美元相比少了34万美元,计算结果与新闻不符. (8分)
1千万瑞典克朗怎么换成美元成了,137,154,168万美元?
20.(本题满分17分)
(理)
解:(1)设
,
时,直线
:
代入
中
可得:
(2分)
则
,由定义可得:
. (4分)
(2)直线
:
,代入
中,可得:
则
,
,设
,
则
即
(2分)
由
(4分)
则
当
时,
的最小值为
.
(6分)
(3)假设满足条件的直线
存在,其方程为
,
设
的中点为
,
与以
为直径的圆相交于点
、
,设
的中点为
,
则
,
点的坐标为
.
,
,
(2分)


,

.
(5分)
令
,得
,此时
为定值,
故满足条件的直线
存在,其方程为
,即抛物线的通径所在的直线.
(7分)
(文)(1)设
,直线
:
代入
中
可得:
(2分)
则
,由定义可得:
.
(4分)
(2)由(1)可设
,
则
即
(2分)
由
,
,
(4分)
则
当
时,
的最小值为
.
(6分)
(3)设
的中点为
,
与以
为直径的圆相交于点
、
,
设
的中点为
,则
,
点的坐标为
.
,
,
(2分)


,

.
(5分)
令
,得
,此时
为定值,
故满足条件的直线
存在,其方程为
,即抛物线的通径所在的直线. (7分)
21.(本题满分17分)
(理)解:(1)(法一)

当
时,
,所以
;
当
时,
是一常数,矛盾,所以
为非零常数列; (4分)
(法二)设
,则有:
,
即
所以
,解得
.由此可知数列
为非零常数列; (4分)
(2)记
,由(1)证明的结论知:
为非零常数列.
(2分)
显然,
为非零常数列时,
不一定为非零常数列,如:非常数数列
(
为大于
的正常数)和常数列
为非零常数)均满足题意要求. (5分)
(3)根据不同思维层次表现予以不同评分.
仅推广到3次方或4次方的结论或者是特殊次方的结论 (结论1分,解答1分)

满足
(常数)且
(常数),则当
为奇数时,
必为非零常数列;当
为偶数时,
不一定为非零常数列.
事实上,记
,由(1)证明的结论知:
为非零常数列,即
为非零常数列.所以当
为奇数时,
为非零常数列;当
为偶数时,
不一定为非零常数列.
(结论2分,解答2分)
或者:设
,即
,则
,即
对一切
均为常数,则必有
,即有
,当
为奇数时,
,当
为偶数时,
或者
.

满足
(常数)且
(常数),且
为整数,
当
均为奇数时,
必为非零常数列;否则
不一定为常数列.
事实上,条件
(正常数)可以转化为
(常数),整个问题转化为
,结论显然成立.
(结论3分,解答3分)
或者:设
,即
,当
为奇数时,有
,则
,即
对一切
均为常数,则必有
,即有
,则
,当
为偶数时,如反例:
,它既满足
次方后是等差数列,又是
(不管
为奇数还是偶数)次方后成等比数列,但它不为常数列.

满足
(常数)且
(常数),
为有理数,
, 则
必为非零常数列;否则
不一定为常数列.
证明过程同
(结论4分,解答3分)

满足
(常数)且
(常数),且
为实数,
,
是不等于1的正数数列,则
必为非零且不等于1的常数列;否则
不一定为常数列.
事实上,当
,
为实数时,条件
同样可以转化为
,记
,由第(1)题的结论知:
必为不等于1的正常数数列,也即
为不等于1的正常数数列,
,从而
也是不等于1的正常数数列.
(结论5分,解答3分)
(文)解:(1)(法一)
(2分)
当
时,
,所以
;
当
时,
是一常数,矛盾,所以
为非零常数列; (5分)
(法二)设
,则有:
,
即
(2分)
所以
,解得
.由此可知数列
为非零常数列; (5分)
(2)记
,由(1)证明的结论知:
为非零常数列.
(2分)
显然,
为非零常数列时,
不一定为非零常数列,如:非常数数列
(
为大于
的正常数)和常数列
为非零常数)均满足题意要求. (5分)
(3)根据不同思维层次表现予以不同评分.
仅推广到3次方或4次方的结论或者是特殊次方的结论
(结论1分)

满足
(常数)且
(常数),则当
为奇数时,
必为非零常数列;当
为偶数时,
不一定为非零常数列.
事实上,记
,由(1)证明的结论知:
为非零常数列,即
为非零常数列.所以当
为奇数时,
为非零常数列;当
为偶数时,
不一定为非零常数列.
(结论3分)
或者:设
,即
,则
,即
对一切
均为常数,则必有
,即有
,当
为奇数时,
,当
为偶数时,
或者
.

满足
(常数)且
(常数),且
为整数,
当
均为奇数时,
必为非零常数列;否则
不一定为常数列.
事实上,条件
(正常数)可以转化为
(常数),整个问题转化为
,结论显然成立.
(结论5分)
或者:设
,即
,当
为奇数时,有
,则
,即
对一切
均为常数,则必有
,即有
,则
,当
为偶数时,如反例:
,它既满足
次方后是等差数列,又是
(不管
为奇数还是偶数)次方后成等比数列,但它不为常数列.

满足
(常数)且
(常数),
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com