《新课标》必修Ⅰ复习 第八讲 函数与方程
一.课标要求:
1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;
2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
二.命题走向
1.方程的根与函数的零点
(1)函数零点
概念:对于函数
,把使
成立的实数
叫做函数
的零点。
函数零点的意义:函数
的零点就是方程
实数根,亦即函数
的图象与
轴交点的横坐标。即:方程
有实数根
函数
的图象与
轴有交点
函数
有零点。
二次函数
的零点:
1)△>0,方程
有两不等实根,二次函数的图象与
轴有两个交点,二次函数有两个零点;
2)△=0,方程
有两相等实根(二重根),二次函数的图象与
轴有一个交点,二次函数有一个二重零点或二阶零点;
3)△<0,方程
无实根,二次函数的图象与
轴无交点,二次函数无零点。
零点存在性定理:如果函数
在区间
上的图象是连续不断的一条曲线,并且有
,那么函数
在区间
内有零点。既存在
,使得
,这个
也就是方程的根。
2.二分法
二分法及步骤:
对于在区间
,
上连续不断,且满足
?![]()
的函数
,通过不断地把函数
的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
给定精度
,用二分法求函数
的零点近似值的步骤如下:
(1)确定区间
,
,验证
?![]()
,给定精度
;
(2)求区间
,
的中点
;
(3)计算
:
①若
=
,则
就是函数的零点;
②若
?
<
,则令
=
(此时零点
);
③若
?
<
,则令
=
(此时零点
);
(4)判断是否达到精度
;
即若
,则得到零点值
(或
);否则重复步骤2~4。
注:函数零点的性质
从“数”的角度看:即是使
的实数;
从“形”的角度看:即是函数
的图象与
轴交点的横坐标;
若函数
的图象在
处与
轴相切,则零点
通常称为不变号零点;
若函数
的图象在
处与
轴相交,则零点
通常称为变号零点。
注:用二分法求函数的变号零点:二分法的条件
?![]()
表明用二分法求函数的近似零点都是指变号零点。
3.二次函数的基本性质
(1)二次函数的三种表示法:y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n。
(2)当a>0,f(x)在区间[p,q]上的最大值M,最小值m,令x0=
(p+q)。
若-
<p,则f(p)=m,f(q)=M;
若p≤-
<x0,则f(-
)=m,f(q)=M;
若x0≤-
<q,则f(p)=M,f(-
)=m;
若-
≥q,则f(p)=M,f(q)=m。
(3)二次方程f(x)=ax2+bx+c=0的实根分布及条件。
①方程f(x)=0的两根中一根比r大,另一根比r小
a?f(r)<0;
②二次方程f(x)=0的两根都大于r![]()
③二次方程f(x)=0在区间(p,q)内有两根![]()
④二次方程f(x)=0在区间(p,q)内只有一根
f(p)?f(q)<0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立。
【课前预习】
1. 关于
的方程
有正根,则实数
的取值范围是
。
2.【07山东文11】.设函数
与
的图象的交点为
,
则
所在的区间是( )
A.
B.
C.
D.![]()
3. 已知定义域为
的函数
是偶函数,并且在
上为增函数。若
,则
的解集是
;
4. 函数
的对称轴方程为
,则常数
=
。
题型1:方程的根与函数零点
例1.判断下列函数在给定区间上是否存在零点。
四.典例解析
(1)![]()
(2)![]()
(3)![]()
例2.(1)方程lgx+x=3的解所在区间为( )
A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)
(2)设a为常数,试讨论方程
的实根的个数。
题型2:零点存在性定理
例3.(2004广东21)设函数
,其中常数
为整数。
(1)当
为何值时,
;
(2)定理:若函数
在
上连续,且
与
异号,则至少存在一点
,使得![]()
试用上述定理证明:当整数
时,方程
在
内有两个实根。
例4.若函数
在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )
A.若
,不存在实数
使得
;
B.若
,存在且只存在一个实数
使得
;
C.若
,有可能存在实数
使得
;
D.若
,有可能不存在实数
使得
;
题型3:二分法的概念
例5.关于“二分法”求方程的近似解,说法正确的是()
A.“二分法”求方程的近似解一定可将
在[a,b]内的所有零点得到;
B.“二分法”求方程的近似解有可能得不到
在[a,b]内的零点;
C.应用“二分法”求方程的近似解,
在[a,b]内有可能无零点;
D.“二分法”求方程的近似解可能得到
在[a,b]内的精确解;
例6.方程
在[0,1]内的近似解,用“二分法”计算到
达到精确度要求。那么所取误差限
是( )
A.0.05 B.
题型4:应用“二分法”求函数的零点和方程的近似解
例7.借助计算器,用二分法求出
在区间(1,2)内的近似解(精确到0.1)。
例8.借助计算器或计算机用二分法求方程
的近似解(精确到
)。
题型5:一元二次方程的根与一元二次函数的零点
例9.(1)已知
是方程
的两个根,且
,
求
的取值范围。
(2)已知关于
的方程
的一根分布在区间(-2,0)内,另一根分布在区间(1,3)内,求实数
的取值范围。
例10.已知二次函数
,设方程
的两个实数根为
和
.
(1)如果
,设函数
的对称轴为
,求证:
;
(2)如果
,
,求
的取值范围.
【课外作业】
1.若函数
有负值,则实数
的取值范围是
(
)
A.
B.
C.
D.
2.若
都是定义在实数集R上的函数,且方程
有实数解,则
不可能是
(
)
A.
B.
C.
D. ![]()
3.设函数
,若![]()
,则关于
的方程
的解的个数为
(
)
A.1
B
4.
是定义在R上的以3为周期的奇函数,且
,则方程
在区间(0,6)内解的个数的最小值是
(
)
A.2
B
5.函数
在[0,2]上
(
)
A.有三个零点 B.有两个零点 C.有一个零点 D.没有零点
五.思维总结
1.函数零点的求法:
①(代数法)求方程
的实数根;
②(几何法)对于不能用求根公式的方程,可以将它与函数
的图象联系起来,并利用函数的性质找出零点。
2.解决二次函数的零点分布问题要善于结合图像,从判别式、韦达定理、对称轴、区间端点函数值的正负、二次函数图像的开口方向等方面去考虑使结论成立的所有条件。函数与方程、不等式联系密切,联系的方法就是数形结合。
2008年7月
【课前预习】
答案: 1、
; 2、B.【试题分析】令
,可求得:
。易知函数
的零点所在区间为
。
3、
; 4、-4。
四.典例解析
题型1:方程的根与函数零点
例1. 分析:利用函数零点的存在性定理或图像进行判断。
解析:(1)方法一:

∴
故
。
方法二:
令
解得
,
所以函数
。
(2)∵
,
∴
。
(3)∵
,
,
∴
,故
在
存在零点。
评析:函数的零点存在性问题常用的办法有三种:一是定理;二是用方程;三是用图像
例2. 解析:(1)方法一令
则根据选择支可以求得
<0;
<0;
>0.因为
<0可得零点在(2,3)内选C
方法二:在同一平面直角坐标系中,画出函数y=lgx与y=-x+3的图象(如图)。它们的交点横坐标
,显然在区间(1,3)内,由此可排除A,D
至于选B还是选C,由于画图精确性的限制,单凭直观就比较困难了。实际上这是要比较
与2的大小。当x=2时,lgx=lg2,3-x=1。由于lg2<1,因此
>2,从而判定
∈(2,3),故本题应选C
(2)原方程等价于
即
构造函数
和
,作出它们的图像,易知平行于x轴的直线与抛物线的交点情况可得:
①当
或
时,原方程有一解;
②当
时,原方程有两解;
③当
或
时,原方程无解。
点评:图象法求函数零点,考查学生的数形结合思想。本题是通过构造函数用数形结合法求方程lgx+x=3解所在的区间。数形结合,要在结合方面下功夫。不仅要通过图象直观估计,而且还要计算
的邻近两个函数值,通过比较其大小进行判断
题型2:零点存在性定理
例3.解析:(1)函数f(x)=x-ln(x+m),x∈(-m,+∞)连续,且

当x∈(-m,1-m)时,f ’(x)<0,f(x)为减函数,f(x)>f(1-m)
当x∈(1-m, +∞)时,f ’(x)>0,f(x)为增函数,f(x)>f(1-m)
根据函数极值判别方法,f(1-m)=1-m为极小值,而且
对x∈(-m, +∞)都有f(x)≥f(1-m)=1-m
故当整数m≤1时,f(x) ≥1-m≥0
(2)证明:由(I)知,当整数m>1时,f(1-m)=1-m<0,
函数f(x)=x-ln(x+m),在
上为连续减函数.

由所给定理知,存在唯一的
而当整数m>1时,

类似地,当整数m>1时,函数f(x)=x-ln(x+m),在
上为连续增函数且 f(1-m)与
异号,由所给定理知,存在唯一的
故当m>1时,方程f(x)=0在
内有两个实根。
点评:本题以信息给予的形式考察零点的存在性定理。解决该题的解题技巧主要在区间的放缩和不等式的应用上。
例4. 解析:由零点存在性定理可知选项D不正确;对于选项B,可通过反例“
在区间
上满足
,但其存在三个解
”推翻;同时选项A可通过反例“
在区间
上满足
,但其存在两个解
”;选项D正确,见实例“
在区间
上满足
,但其不存在实数解”。
点评:该问题详细介绍了零点存在性定理的理论基础。
题型3:二分法的概念
例5. 解析:如果函数在某区间满足二分法题设,且在区间内存在两个及以上的实根,二分法只可能求出其中的一个,只要限定了近似解的范围就可以得到函数的近似解,二分法的实施满足零点存在性定理,在区间内一定存在零点,甚至有可能得到函数的精确零点。
点评:该题深入解析了二分法的思想方法。
例6.解析:由四舍五入的原则知道,当
时,精度达到
。此时差限
是0.0005,选项为C。
点评:该题考察了差限的定义,以及它对精度的影响。
题型4:应用“二分法”求函数的零点和方程的近似解
例7. 解析:原方程即
。令
,
用计算器做出如下对应值表
x
-2
-1
0
1
2
f(x)
2.5820
3.0530
27918
1.0794
-4.6974
观察上表,可知零点在(1,2)内
取区间中点
=1.5,且
,从而,可知零点在(1,1.5)内;
再取区间中点
=1.25,且
,从而,可知零点在(1.25,1.5)内;
同理取区间中点
=1.375,且
,从而,可知零点在(1.25,1.375)内;
由于区间(1.25,1.375)内任一值精确到0.1后都是1.3。故结果是1.3。
点评:该题系统的讲解了二分法求方程近似解的过程,通过本题学会借助精度终止二分法的过程。
例8. 分析:本例除借助计算器或计算机确定方程解所在的大致区间和解的个数外,你是否还可以想到有什么方法确定方程的根的个数?
略解:图象在闭区间
,
上连续的单调函数
,在
,
上至多有一个零点。
点评:①第一步确定零点所在的大致区间
,
,可利用函数性质,也可借助计算机或计算器,但尽量取端点为整数的区间,尽量缩短区间长度,通常可确定一个长度为1的区间;
②建议列表样式如下:
零点所在区间
中点函数值
区间长度
[1,2]
>0
1
[1,1.5]
<0
0.5
[1.25,1.5]
<0
0.25
如此列表的优势:计算步数明确,区间长度小于精度时,即为计算的最后一步。
题型5:一元二次方程的根与一元二次函数的零点
例9. 分析:从二次方程的根分布看二次函数图像特征,再根据图像特征列出对应的不等式(组)。
解析:(1)设
,
由
,知
∴
,
∴
(2)令
∴
,
且
,∴
,∴
,
综上,
。
评析:二次方程、二次函数、二次不等式三者密不可分。
例10.解析:设
,则
的二根为
和
。
(1)由
及
,可得
,即
,
即
两式相加得
,所以,
;
(2)由
, 可得
。
又
,所以
同号。
∴
,
等价于
或
,
即
或
解之得
或
。
点评:条件
实际上给出了
的两个实数根所在的区间,因此可以考虑利用上述图像特征去等价转化。
【课外作业】
1. 答案:A,令
即可;
2. 答案:B;
3.答案:C,由
可得
关于
对称,∴
,∴
∴
,∴
,∵
,∴
。
4、 答案:D, ∵
,∴
∴
, ∴
5. 答案:C,先求出
,根据单调性求解;
五.思维总结
1.函数零点的求法:
①(代数法)求方程
的实数根;
②(几何法)对于不能用求根公式的方程,可以将它与函数
的图象联系起来,并利用函数的性质找出零点。
2.解决二次函数的零点分布问题要善于结合图像,从判别式、韦达定理、对称轴、区间端点函数值的正负、二次函数图像的开口方向等方面去考虑使结论成立的所有条件。函数与方程、不等式联系密切,联系的方法就是数形结合。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com