17. 已知.. (I)若.求, (II)若R.求实数的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.

(I) 求这次铅球测试成绩合格的人数;

(II) 用此次测试结果估计全市毕业生的情况.若从                       今年的高中毕业生中随机抽取两名,记表示两人中成绩不合格的人数,求的分布列及数学期望;

(III) 经过多次测试后,甲成绩在8~10米之间,乙成绩在9.5~10.5米之间,现甲、乙各投掷一次,求甲比乙投掷远的概率.

查看答案和解析>>

(本小题满分12分)

甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:

若将频率视为概率,回答下列问题:

   (I)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;

   (II)若甲、乙两运动员各自射击1次,表示这2次射击中击中9环以上(含9环)的次数,求的分布列及

 

 

查看答案和解析>>

(本小题满分8分)已知函数.

(I)求的最小正周期和单调递增区间;

(II)若锐角满足,求角的值。

 

查看答案和解析>>

(本小题满分12分)
甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:

若将频率视为概率,回答下列问题:
(I)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;
(II)若甲、乙两运动员各自射击1次,表示这2次射击中击中9环以上(含9环)的次数,求的分布列及

查看答案和解析>>

(本小题16分)已知各项均为实数的数列{an}是公差为d的等差数列,它的前n项和

Sn,且满足S4=2S2+8. 

(I)求公差d的值;

(II)若数列{an}的首项的平方与其余各项之和不超过10,则这样的数列至多有多少项;

(III)请直接写出满足(2)的项数最多时的一个数列(不需要给出演算步骤).

查看答案和解析>>


同步练习册答案