12.定义运算:⊙如2⊙5=2.则下列等式不能成立的是 A.⊙=⊙ B.(⊙)⊙= ⊙(⊙) C. D.(其中) 第Ⅱ卷 查看更多

 

题目列表(包括答案和解析)

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(
.
a-c
bd
.
.
da
cb
.
)

(1)计算:(2,3)⊙(-1,4);
(2)请用数学符号语言表述运算⊙满足交换律和结合律,并任选其一证明;
(3)A中是否存在唯一确定的元素I满足:对于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,请求出元素I;若不存在,请说明理由;
(4)试延续对集合A的研究,请在A上拓展性地提出一个真命题,并说明命题为真的理由.

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(ad+bc,bd-ac).
(1)计算:(2,3)⊙(-1,4).
(2)请用数学符号语言表述运算⊙满足交换律,并给出证明.
(3)若“A中的元素I=(x,y)”是“对?α∈A,都有α⊙I=I⊙α=α成立”的充要条件,试求出元素I.

查看答案和解析>>

在中学阶段,对许多特定集合(如整数集、有理数集、实数集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为?,对于A中的任意两个元素α=(a,b),β=(c,d),现规定:α?β=(ad+bc,bd-ac).
(1)计算:(2,3)?(-1,4);     
(2)A中是否存在元素γ满足:对于任意α∈A,都有γ?α=α成立,若存在,请求出元素γ;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=[x[x]](n<x<n+1),其中[x]表示不超过x的最大整数,如[-2.1]=-3,[-3]=-3,[2.5]=2.定义an是函数f(x)的值域中的元素个数,数列{an}的前n项和为Sn,则满足anSn<500的最大正整数n=
9
9

查看答案和解析>>

阅读下列材料,然后解答问题;对于任意实数x,符号[x]表示“不超过x的最大整
数”,在数轴上,当x是整数,[x]是x,当x不是整数时,[x]是x左侧的第一个整数,这个函数叫做“取整函数”,也叫高斯(Gauss)函数,如[-2]=-2、[-1.5]=-2、[2.5]=2  定义函数{x}=x-[x],给出下列四个命题;
①函数[x]的定义域是R,值域为[0,1];
②方程{x}=
12
有无数个解;
③函数{x}是周期函数;
④函数{x}是增函数.
其中正确命题的序号是
 
(写出所有正确结论的序号)

查看答案和解析>>


同步练习册答案