题目列表(包括答案和解析)
(本小题12分)若存在实常数
和
,使得函数
和
对其定义域上的任意实数
分别满足
和
,则称直线
为
和
的“隔离直线”.已知
,
(其中
为自然对数的底数).
(1) 判断函数
的零点个数并证明你的结论;
(2) 函数
和
是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
(本小题满分12分)已知椭圆
,离心率为
的椭圆经过点
.
(1)求该椭圆的标准方程;
(2)过椭圆的一个焦点且互相垂直的直线
分别与椭圆交于
和
,是否存在常数
,使得
?若存在,求出实数
的值;若不存在,请说明理由.
(本小题满分12分)已知椭圆
,离心率为
的椭圆经过点
.
(1)求该椭圆的标准方程;
(2)过椭圆的一个焦点且互相垂直的直线
分别与椭圆交于
和
,是否存在常数
,使得
?若存在,求出实数
的值;若不存在,请说明理由.
(本小题满分12分)
设函数
,
.
(Ⅰ)若
,求
的极小值;
(Ⅱ)在(Ⅰ)的条件下,是否存在实常数
和
,使得
和
?若存在,求出
和
的值.若不存在,说明理由.
(Ⅲ)设
有两个零点
,且
成等差数列,
试探究
值的符号.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com