如图.抛物线的焦点为F.准线为.过F作两条互相垂直 的弦.设AB.CD的中点分别为M.N. (1)试判断以AC为直径的圆与准线的位置关系. 并说明理由, (2)求证:直线MN过定点.并求面积的最小值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)如图,抛物线的顶点在坐标原点,且开口向右,点A,B,C在抛物线上,△ABC的重心F为抛物线的焦点,直线AB的方程为.(Ⅰ)求抛物线的方程;(Ⅱ)设点M为某定点,过点M的动直线l与抛物线相交于P,Q两点,试推断是否存在定点M,使得以线段PQ为直径的圆经过坐标原点?若存在,求点M的坐标;若不存在,说明理由.

查看答案和解析>>

(本小题满分13分)

如图,椭圆C: 的焦点为F1(0,c)、F2(0,一c)(c>0),抛物线的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A、B两点,且

   (I)求证:切线l的斜率为定值

 
   (Ⅱ)设抛物线P与直线l切于点E,若△OEF2面积为1,求椭圆C和抛物线P的方程。

查看答案和解析>>

(本小题满分13分)
如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线轴上方的交点为,延长交抛物线于点是抛物线上一动点,且M之间运动.
(1)当时,求椭圆的方程;
(2)当的边长恰好是三个连续的自然数时,求面积的最大值.

查看答案和解析>>

(本小题满分13分)

如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线轴上方的交点为,延长交抛物线于点是抛物线上一动点,且M之间运动.

(1)当时,求椭圆的方程;

(2)当的边长恰好是三个连续的自然数时,求面积的最大值.

 

 

查看答案和解析>>

(本小题满分13分)
如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线轴上方的交点为,延长交抛物线于点是抛物线上一动点,且M之间运动.
(1)当时,求椭圆的方程;
(2)当的边长恰好是三个连续的自然数时,求面积的最大值.

查看答案和解析>>


同步练习册答案