直线l⊥平面α.直线m与平面α成30º角.则异面直线l与m所成角的大小是 . 查看更多

 

题目列表(包括答案和解析)

已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是 k1,k2k1k2=-
1
4

(1)求动点P的轨迹C的方程;
(2)设直线l:y=kx+m与曲线C交于不同的两点M,N.
①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值
②若直线BM,BN的斜率都存在并满足kBMkBN=-
1
4
,证明直线l过定点,并求出这个定点.

查看答案和解析>>

3、已知直线l⊥平面α,直线m?平面β,有下面四个命题,其中正确命题是①α∥β?l⊥m②α⊥β?l∥m③l∥m?α⊥β④l⊥m?α∥β

查看答案和解析>>

在平面直角坐标系xoy 中,点M 到两定点F1(-1,0)和F2(1,0)的距离之和为4,设点M 的轨迹是曲线C.
(1)求曲线C 的方程;   
(2)若直线l:y=kx+m 与曲线C 相交于不同两点A、B (A、B 不是曲线C 和坐标轴的交点),以AB 为直径的圆过点D(2,0),试判断直线l 是否经过一定点,若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,直线l:y=x+m与椭圆C:
x2
16
+
y2
4
=1相交于A、B两点,且OA+OB>AB.
(1)求m的取值范围;
(2)若以AB为直径的圆经过O点,求直线l的方程.

查看答案和解析>>

已知直线l⊥平面α,直线m?平面β,有下列命题:
①α∥β⇒l⊥m,
②α⊥β⇒l∥m
③l∥m⇒α⊥β
④l⊥m⇒α∥β
正确的命题是(  )

查看答案和解析>>


同步练习册答案