数据1.3.4.8的平均数与方差分别是( ) 2.10.5 (C)4.2 (D)4.6.5 查看更多

 

题目列表(包括答案和解析)

某校高三数学竞赛初赛考试后,对考生的成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…第六组[140,150].图(1)为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人.
(Ⅰ)请补充完整频率分布直方图,并估计这组数据的平均数M;
精英家教网
(Ⅱ)若不低于120分的同学进入决赛,不低于140分的同学为种子选手,完成下面2×2
列联表(即填写空格处的数据),并判断是否有99%的把握认为“进入决赛的同学
成为种子选手与专家培训有关”.
a≥-
1
2
[140,150] 合计
参加培训 5 8
未参加培训
合计 4

附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

某校高三数学竞赛初赛考试后,对考生的成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…第六组[140,150].图(1)为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人.
(Ⅰ)请补充完整频率分布直方图,并估计这组数据的平均数M;

精英家教网

(Ⅱ)若不低于120分的同学进入决赛,不低于140分的同学为种子选手,完成下面2×2
列联表(即填写空格处的数据),并判断是否有99%的把握认为“进入决赛的同学
成为种子选手与专家培训有关”.
a≥-
1
2
[140,150] 合计
参加培训 5 8
未参加培训
合计 4

附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

某服装商场为了了解毛衣的月销售量(件)与月平均气温(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:

月平均气温

17

13

8

2

月销售量(件)

24

33

40

55

(1)做出散点图;

(2) 求线性回归方程 ;

(3)气象部门预测下个月的平均气温约为6ºC,据此估计该商场下个月毛衣的销售量.(   ,

 

查看答案和解析>>

某服装商场为了了解毛衣的月销售量(件)与月平均气温(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:

月平均气温
17
13
8
2
月销售量(件)
24
33
40
55
(1)做出散点图;
(2) 求线性回归方程 ;
(3)气象部门预测下个月的平均气温约为6ºC,据此估计该商场下个月毛衣的销售量.(   ,

查看答案和解析>>

某高校共有学生15 000人,其中男生10 500人,女生4 500人,为调查该校学生每周平均体育运动的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4], (4,6], (6,8], (8,10], (10,12],估计该校学生每周平均体育运动时间超过4小时的概率;

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:

P(K2≥k0)
0.10
0.05
0.010
0.005
k0
2.706
3.841
6.635
7.879
 

查看答案和解析>>


同步练习册答案