在三棱锥B-ADC中. BA=BC=DA=DC.∠ADC=∠ABC= 90˚.且平面ABC⊥平面ADC.O.E分别为AC.BC的中点. (1)求证: BC⊥平面ODE, (2)求直线AB与DE所成角的大小. 查看更多

 

题目列表(包括答案和解析)

在边长为a的正方形ABCD中,E,F分别为BC,CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥B-AEF,如图所示.

(1)在三棱锥B-AEF中,求证:AB⊥EF;

(2)求四棱锥E-AMNF的体积.

查看答案和解析>>

如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是(  )

A. 平面ABD⊥平面ABC             B. 平面ADC⊥平面BDC

C. 平面ABC⊥平面BDC             D. 平面ADC⊥平面ABC

 

查看答案和解析>>

如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是(  )

A.平面ABD⊥平面ABC B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC D.平面ADC⊥平面ABC

查看答案和解析>>

如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.

(Ⅰ)求证:平面EFC⊥平面BCD;
(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,
求三棱锥B-ADC的体积.

查看答案和解析>>

如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,

使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是(  )

A.平面ADC⊥平面ABC

B.平面ADC⊥平面BDC

C.平面ABC⊥平面BDC

D.平面ABD⊥平面ABC

 

 

 

 

 

查看答案和解析>>


同步练习册答案