1.学习目标: 体会分布的意义和作用.学会列频率分布表.会画频率分布条形图.直方图.会用频率分布表或分布条形图.直方图估计总体分布.并作出合理解释.在解决问题过程中.进一步体会用样本估计整体的思想.认识统计的实际作用.初步经历收集数据到统计数据的全过程.体会统计思维与确定性思维的差异. 查看更多

 

题目列表(包括答案和解析)

甲、乙、丙三人射击同一目标,各射击一次,已知甲击中目标的概率为
3
5
,乙与丙击中目标的概率分别为m,n(m>n),每人是否击中目标是相互独立的.记目标被击中的次数为ξ,且ξ的分布列如下表:
ξ 0 1 2 3
P
1
15
a b
1
5
(Ⅰ)求m,n的值;
(Ⅱ)求ξ的数学期望.

查看答案和解析>>

(2013•西城区一模)某班有甲、乙两个学习小组,两组的人数如下:
    组别
性别
3 2
5 2
现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测.
(Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;
(Ⅱ)记X为抽取的3名同学中男同学的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是
13
,每次测试通过与否互相独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(Ⅰ)求该学生考上大学的概率.
(Ⅱ)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为ξ,求变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

(2012•湖北模拟)某校高二年级共有学生1000名,其中走读生750名,住宿生250名,现从该年级采用分层抽样的方法从该年级抽取n名学生进行问卷调查,根据问卷取得了这n名同学每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组:[0,30),[30,60),[60,90),[90,120),[120,150),[150,180),[180,210),[210.240),得到频率分布直方图如图,已知抽取的学生中每天晚上有效学习时间少于60分钟的人数为5人.
(1)求n的值并求有效学习时间在[90,120)内的频率;
(2)如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,下列2×2列联表,问:是否有95%的把握认为学生利用时间是否充分与走读、住宿有关?
利用时间充分 利用时间不充分 合计
走读生 50 a
75
75
住校生 b 15
25
25
合计
60
60
40 n
(3)若在第①组、第②组、第⑦组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“有效学习时间少于60分钟”的学生人数为X,求X的分布列及期望.
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

参考列表:

P(K2≥k0
0.50 0.40 0.25 0.15 0.10 0.05 0.025

k0
0.455 0.708 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>


同步练习册答案