二项式定理应用: (1)求常数项.有理项和系数最大等特定的项; (2)求和,证整除性; n≈1+na, ; (4)二项式定理给出了一种计算方法,要注意在其它数学问题,如函数.数列.不等式中的应用. 查看更多

 

题目列表(包括答案和解析)

设数列{an}的前n项和为Sn,若对于任意的n∈N*,都有Sn=2an-3n.
(1)求数列{an}的首项a1与递推关系式:an+1=f(an);
(2)先阅读下面定理:“若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,则数列{an-
B1-A
}
是以A为公比的等比数列.”请你在第(1)题的基础上应用本定理,求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

阅读下面给出的定义与定理:
①定义:对于给定数列{xn},如果存在实常数p、q,使得xn+1=pxn+q 对于任意n∈N+都成立,我们称数列{xn}是“线性数列”.
②定理:“若线性数列{xn}满足关系xn+1=pxn+q,其中p、q为常数,且p≠1,p≠0,则数列{xn-
q1-p
}
是以p为公比的等比数列.”
(Ⅰ)如果an=2n,bn=3•2n,n∈N+,利用定义判断数列{an}、{bn}是否为“线性数列”?若是,分别指出它们对应的实常数p、q;若不是,请说明理由;
(Ⅱ)如果数列{cn}的前n项和为Sn,且对于任意的n∈N*,都有Sn=2cn-3n,
①利用定义证明:数列{cn}为“线性数列”;
②应用定理,求数列{cn}的通项公式;
③求数列{cn}的前n项和Sn

查看答案和解析>>

设数列{an}的前n项和为Sn,若对于任意的n∈N*,都有Sn=2an-3n,

(1)求数列{an}的首项与递推关系式an+1=f(an);

(2)先阅读下面定理,若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,则数列{an-}是以A为公比的等比数列,请你在第(1)题的基础上应用本定理,求数列{an}的通项公式;

(3)求数列{an}的前n项和Sn.

查看答案和解析>>

已知是公差为d的等差数列,是公比为q的等比数列

(Ⅰ)若 ,是否存在,有?请说明理由;

(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

【解析】第一问中,由,整理后,可得为整数不存在,使等式成立。

(2)中当时,则

,其中是大于等于的整数

反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)中设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

结合二项式定理得到结论。

解(1)由,整理后,可得为整数不存在,使等式成立。

(2)当时,则,其中是大于等于的整数反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

   由,得

为奇数时,此时,一定有使上式一定成立。为奇数时,命题都成立

 

查看答案和解析>>

20.在二项式的展开式中,前三项系数的绝对值成等差数列

(1)求展开式的常数项; (2)求展开式中二项式系数最大的项;

(3)求展开式中各项的系数和。

【解析】本试题主要考查了二项式定理中通项公式和二项式系数的概念以及求解各个系数和的运用,赋值法思想要深刻体会。

 

查看答案和解析>>


同步练习册答案