题目列表(包括答案和解析)
(本题满分10分)在一个口袋中装有12个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到红球的概率是
,从袋中任意摸出2个球,至少得到一个黑球的概率是
。
求:(1)袋中黑球的个数;
(2)从袋中任意摸出3个球,至少得到2个黑球的概率。(结果用分数表示)
(本小题满分12分)一个袋子中有红、白、蓝三种颜色的球共24个,除颜色外完全相同,已知蓝色球3个. 若从袋子中随机取出1个球,取到红色球的概率是
.
(1)求红色球的个数;
(2)若将这三种颜色的球分别进行编号,并将1号红色球,1号白色球,2号蓝色球和3号蓝色球这四个球装入另一个袋子中,甲乙两人先后从这个袋子中各取一个球(甲先取,取出的球不放回),求甲取出的球的编号比乙的大的概率.
(本小题满分12分)一个袋子中有红、白、蓝三种颜色的球共24个,除颜色外完全相同,已知蓝色球3个. 若从袋子中随机取出1个球,取到红色球的概率是
.
(1)求红色球的个数;
(2)若将这三种颜色的球分别进行编号,并将1号红色球,1号白色球,2号蓝色球和3号蓝色球这四个球装入另一个袋子中,甲乙两人先后从这个袋子中各取一个球(甲先取,取出的球不放回),求甲取出的球的编号比乙的大的概率.
(本小题满分12分)甲有一个装有
个红球、
个黑球的箱子,乙有一个装有
个红球、
个黑球的箱子,两人各自从自己的箱子里任取一球,并约定:所取两球同色时甲胜,异色时乙胜(
,
,
,![]()
).
(Ⅰ)当
,时,求甲获胜的概率;
(Ⅱ)当
,
时,规定:甲取红球获胜得3分;取黑球获胜得1分;甲负得0分.求甲的得分期望达到最大时的
,
值;
(Ⅲ)当
时,这个游戏规则公平吗?请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com