设点在直线上.则的最小值是为 . 查看更多

 

题目列表(包括答案和解析)

为常数,离心率为的双曲线上的动点到两焦点的距离之和的最小值为,抛物线的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线为负常数)上任意一点向抛物线引两条切线,切点分别为,坐标原点恒在以为直径的圆内,求实数的取值范围。

【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

第二问中,

故直线的方程为,即

所以,同理可得:

借助于根与系数的关系得到即是方程的两个不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

(Ⅱ)设

故直线的方程为,即

所以,同理可得:

是方程的两个不同的根,所以

由已知易得,即

 

查看答案和解析>>


  已知:函数),
  (1)若函数图象上的点到直线距离的最小值为,求的值;
  (2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
  (3)对于函数定义域上的任意实数,若存在常数,使得不等式
     都成立,则称直线为函数的“分界线”。设
     ,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存
     在,请说明理由.

查看答案和解析>>

(本小题满分14分)

  已知:函数),

  (1)若函数图象上的点到直线距离的最小值为,求的值;

  (2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;

  (3)对于函数定义域上的任意实数,若存在常数,使得不等式都成立,则称直线为函数的“分界线”。设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

 

查看答案和解析>>

下列命题中:(1)若满足满足,则
(2)函数的图象恒过定点A,若A在 上,其中的最小值是; (3)设是定义在R上,以1为周期的函数,若上的值域为,则在区间上的值域为; (4)已知曲线与直线仅有2个交点,则; (5)函数图象的对称中心为(2,1)。
其中真命题序号为            

查看答案和解析>>

(本小题满分14分)
  已知:函数),
  (1)若函数图象上的点到直线距离的最小值为,求的值;
  (2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
  (3)对于函数定义域上的任意实数,若存在常数,使得不等式都成立,则称直线为函数的“分界线”。设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案