19. 过点Q(4.1)作抛物线的弦AB.若弦AB恰被Q平分.求AB所在直线的 方程. 查看更多

 

题目列表(包括答案和解析)

对抛物线C:x2=4y,有下列命题:
①设直线l:y=kx+l,则直线l被抛物线C所截得的最短弦长为4;
②已知直线l:y=kx+l交抛物线C于A,B两点,则以AB为直径的圆一定与抛物线的准线相切;
③过点P(2,t)(t∈R)与抛物线有且只有一个交点的直线有1条或3条;
④若抛物线C的焦点为F,抛物线上一点Q(2,1)和抛物线内一点R(2,m)(m>1),过点Q作抛物线的切线l1,直线l2过点Q且与l1垂直,则l2一定平分∠RQF.
其中你认为是真命题的所有命题的序号是
①②④
①②④

查看答案和解析>>

已知抛物线x2=2py(p>0)上一点P的坐标为(x0,y0)及直线y=-
p
2
上一点Q(m,-
p
2
)
,过点Q作抛物线的两条切线QA,QB(A,B为切点).
(1)求过点P与抛物线相切的直线l的方程;
(2)求直线AB的方程.
(3)当点Q在直线y=-
p
2
上变化时,求证:直线AB过定点,并求定点坐标.

查看答案和解析>>

下列命题正确的有___________
①已知A,B是椭圆的左右两个顶点, P是该椭圆上异于A,B的任一点,则
②已知双曲线的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则的最小值为-2.
③若抛物线:的焦点为,抛物线上一点和抛物线内一点,过点Q作抛物线的切线,直线过点且与垂直,则平分
④已知函数是定义在R上的奇函数,, 则不等式的解集是

查看答案和解析>>

已知抛物线x2=2py(p>0)上一点P的坐标为(x0,y0)及直线数学公式上一点数学公式,过点Q作抛物线的两条切线QA,QB(A,B为切点).
(1)求过点P与抛物线相切的直线l的方程;
(2)求直线AB的方程.
(3)当点Q在直线数学公式上变化时,求证:直线AB过定点,并求定点坐标.

查看答案和解析>>

已知抛物线x2=2py(p>0)上一点P的坐标为(x0,y0)及直线y=-
p
2
上一点Q(m,-
p
2
)
,过点Q作抛物线的两条切线QA,QB(A,B为切点).
(1)求过点P与抛物线相切的直线l的方程;
(2)求直线AB的方程.
(3)当点Q在直线y=-
p
2
上变化时,求证:直线AB过定点,并求定点坐标.

查看答案和解析>>


同步练习册答案