题目列表(包括答案和解析)
(本小题满分10分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求证:平面A B1D1∥平面EFG;
(2)求证:平面AA1C⊥面EFG .
![]()
(本小题满分10分)
四棱锥P-ABCD中,底面ABCD是正方形,
边长为
,PD=
,PD⊥平面ABCD
(1)求证: AC⊥PB ;
(2)求二面角A-PB-D的大小;
(3)求四棱锥外接球的半径.
(4)在这个四棱锥中放入一个球,求球的最大半径;
![]()
(选修4-4:坐标系与参数方程) (本小题满分10分)
在直角坐标系xoy中,直线
的参数方程为
(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线
交于点A、B,若点P的坐标为
,求|PA|+|PB|.
23(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,
,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
24.(本小题满分10分)
将一枚硬币连续抛掷
次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为
,正面向上的次数为偶数的概率为
.
(Ⅰ)若该硬币均匀,试求
与
;
(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为
,试比较
与
的大小.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com