动点A到定点F1和F2的距离的和为4.则动点A的轨迹为 ( ) A. 椭圆 B. 线段 C. 无图形 D. 两条射线, 查看更多

 

题目列表(包括答案和解析)

动点A到定点F1(-2,0)和F2(2,0)的距离的和为4,则动点A的轨迹为

[  ]

A.椭圆

B.线段

C.无图形

D.两条射线;

查看答案和解析>>

动点M到两定点F1(-2,0),F2(2,0)的距离之和为4,则动点M的轨迹是

[  ]
A.

椭圆

B.

线段

C.

射线

D.

没有轨迹

查看答案和解析>>

设动点P到两定点F1(-l,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2 sin2θ=λ.

(1)证明:动点P的轨迹C为双曲线,并求出C的方程;

(2)如图,过点F2的直线与双曲线C的右支交于A、B两点.问:是否存在λ,使△F1AB是以点B为直角定点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

设动点P到两定点F1(-l,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.

(1)证明:动点P的轨迹C为双曲线,并求出C的方程;

(2)如图,过点F2的直线与双曲线C的右支交于A、B两点.问:是否存在λ,使△F1AB是以点B为直角定点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点.

(1)

若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标

(2)

设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程

(3)

已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kpM与kPN之积是与点P位置无关的定值.试对双曲线=1写出具有类似特性的性质,并加以证明.

查看答案和解析>>


同步练习册答案