19.等比数列中.已知.分别为等差数列 的第3项和第15项 (1)求数列和的通项公式, (2)若.试求数列的前项和. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

在数列{an}中,a1=2,a2=8,且已知函数)在x=1时取得极值.(Ⅰ)求证:数列{an+1—2an}是等比数列,(Ⅱ)求数列的通项an;(Ⅲ)设,且对于恒成立,求实数m的取值范围.

 

查看答案和解析>>

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。

已知是公差为的等差数列,是公比为的等比数列。

(1)       若,是否存在,有说明理由;    

(2)       找出所有数列,使对一切,,并说明理由;

(3)       若试确定所有的,使数列中存在某个连续项的和是数列中的一项,请证明。

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.

已知是公差为的等差数列,是公比为的等比数列.

(1)       若,是否存在,有说明理由;

(2)       找出所有数列,使对一切,,并说明理由;

(3)       若试确定所有的,使数列中存在某个连续项的和是数列中的一项,请证明.

查看答案和解析>>

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)

在平行四边形中,已知过点的直线与线段分别相交于点。若

(1)求证:的关系为

(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。

(3)设函数上偶函数,当,又函数图象关于直线对称, 当方程上有两个不同的实数解时,求实数的取值范围。

查看答案和解析>>


同步练习册答案