题目列表(包括答案和解析)
(本小题满分12分)
在数列{an}中,a1=2,a2=8,且已知函数
(
)在x=1时取得极值.(Ⅰ)求证:数列{an+1—2an}是等比数列,(Ⅱ)求数列
的通项an;(Ⅲ)设
,且
对于
恒成立,求实数m的取值范围.
已知递增等差数列
满足:
,且
成等比数列.
(1)求数列
的通项公式
;
(2)若不等式
对任意
恒成立,试猜想出实数
的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列
公差为
,
由题意可知
,即
,解得d,得到通项公式,第二问中,不等式等价于
,利用当
时,
;当
时,
;而
,所以猜想,
的最小值为
然后加以证明即可。
解:(1)设数列
公差为
,由题意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等价于
,
当
时,
;当
时,
;
而
,所以猜想,
的最小值为
. …………8分
下证不等式
对任意
恒成立.
方法一:数学归纳法.
当
时,
,成立.
假设当
时,不等式
成立,
当
时,
,
…………10分
只要证
,只要证
,
只要证
,只要证
,
只要证
,显然成立.所以,对任意
,不等式
恒成立.…14分
方法二:单调性证明.
要证 ![]()
只要证
,
设数列
的通项公式
, …………10分
, …………12分
所以对
,都有
,可知数列
为单调递减数列.
而
,所以
恒成立,
故
的最小值为
.
(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。
已知
是公差为
的等差数列,
是公比为
的等比数列。
(1) 若
,是否存在
,有
说明理由;
![]()
(2) 找出所有数列
和
,使对一切
,
,并说明理由;
(3) 若
试确定所有的
,使数列
中存在某个连续
项的和是数列
中的一项,请证明。
(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.
已知
是公差为
的等差数列,
是公比为
的等比数列.
(1) 若
,是否存在
,有
说明理由;
(2) 找出所有数列
和
,使对一切
,
,并说明理由;
(3) 若
试确定所有的
,使数列
中存在某个连续
项的和是数列
中的一项,请证明.
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形
中,已知过点
的直线与线段
分别相交于点
。若
。
(1)求证:
与
的关系为
;
(2)设
,定义函数
,点列
在函数
的图像上,且数列
是以首项为1,公比为
的等比数列,
为原点,令
,是否存在点![]()
,使得
?若存在,请求出
点坐标;若不存在,请说明理由。
(3)设函数
为
上偶函数,当
时
,又函数
图象关于直线
对称, 当方程
在
上有两个不同的实数解时,求实数
的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com