题目列表(包括答案和解析)
(本小题满分12分)如图,已知直三棱柱ABC—A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点. (Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.
(本小题满分12分)
如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为a的
菱形,且
,侧棱AA1长等于3a,O为底面ABCD对
角线的交点.
(1)求证:OA1∥平面B1CD1;
(2)求异面直线AC与A1B所成的角;
(3)在棱
上取一点F,问AF为何值时,C1F⊥平面BDF?
(本小题满分12分)
如图椭圆
的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为
, 求椭圆的方程.
![]()
(本小题满分12分)
如图椭圆
的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为
, 求椭圆的方程.![]()
(本小题满分12分) 如图所示,已知圆
为圆上一动点,点
在
上,点
在
上,且满足
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
且斜率为k的动直线
交曲线
于A、B两点,在y轴上是否存在定点G,满足
使四边
形
为矩形?若存在,求出G的坐标和四边形
面积的最大值;若不存
在,说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com