题目列表(包括答案和解析)
(本小题满分16分)
时值5月,荔枝上市.某市水果市场由历年的市场行情得知,从5月10日起的60天内,荔枝的售价S(t)(单位:元/kg)与上市时间t(单位:天)的关系大致可用如图1所示的折线ABCD表示,每天的销售量M(t)(单位:吨)与上市时间t(单位:天)的关系大致可用如图2所示的抛物线段OEF表示,其中O为坐标原点,E是抛物线的顶点.
(1)请分别写出S(t),M(t)关于t的函数关系式;
(2)在这60天内,该水果市场哪天的销售额最大?
(选修4-4:坐标系与参数方程) (本小题满分10分)
在直角坐标系xoy中,直线
的参数方程为
(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线
交于点A、B,若点P的坐标为
,求|PA|+|PB|.
23(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,
,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
24.(本小题满分10分)
将一枚硬币连续抛掷
次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为
,正面向上的次数为偶数的概率为
.
(Ⅰ)若该硬币均匀,试求
与
;
(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为
,试比较
与
的大小.
(选修4-4:坐标系与参数方程) (本小题满分10分)
在直角坐标系xoy中,直线
的参数方程为
(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线
交于点A、B,若点P的坐标为
,求|PA|+|PB|.
23(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,
,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
24.(本小题满分10分)
将一枚硬币连续抛掷
次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为
,正面向上的次数为偶数的概率为
.
(Ⅰ)若该硬币均匀,试求
与
;
(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为
,试比较
与
的大小.
A.选修4-1:几何证明选讲
|
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD.求证:(1)l是⊙O的切线;(2)PB平分∠ABD.
![]()
B.选修4-2:矩阵与变换
(本小题满分10分)
已知点A在变换:T:→=作用后,再绕原点逆时针旋转90°,得到点B.若点B坐标为(-3,4),求点A的坐标.
C.选修4-4:坐标系与参数方程
(本小题满分10分)
求曲线C1:被直线l:y=x-所截得的线段长.
D.选修4-5:不等式选讲
(本小题满分10分)
已知a、b、c是正实数,求证:≥.
本小题满分10分)选修4—4:坐标系与参数方程
如图,已知点
,
,圆
是以
为直径的圆,直线
:
(
为参数).![]()
(Ⅰ)写出圆
的普通方程并选取适当的参数改写为参数方程;
(Ⅱ)过原点
作直线
的垂线,垂足为
,若动点
满足
,当
变化时,求点
轨迹的参数方程,并指出它是什么曲线.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com