已知过点A(1,1)且斜率为-m的直线l与x轴.y轴分别交于P.Q,过P.Q作直线2x+y=0的垂线.垂足为R.S,求四边形PRSQ面积的最小值. 衡水中学2009-20010学年度小学期第二次调研考试 查看更多

 

题目列表(包括答案和解析)

 (本小题满分12分) 已知椭圆的离心率,A,B

分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且.

(1)求椭圆的方程;

(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

 

查看答案和解析>>

(本小题满分12分)

已知 F1、F2是椭圆的两焦点,是椭圆在第一象限弧上一点,且满足=1.过点P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.

(1)求P点坐标;

(2)求证直线AB的斜率为定值;

(3)求△PAB面积的最大值.

 

 

 

 

查看答案和解析>>

(本小题满分12分)

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线,使得和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.   

(1)求双曲线G的渐近线的方程;  

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当的面积最大时点P的坐标.

 

 

查看答案和解析>>

(本小题满分12分) 已知椭圆的离心率,A,B
分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

查看答案和解析>>

(本小题满分12分)

已知直线所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到F的最小距离为2

(1)求椭圆C的标准方程;

(2)已知圆O:,直线:,当点在椭圆C上运动时,直线与圆O是否相交于两个不同的点A,B?若相交,试求弦长|AB|的取值范围,否则说明理由.

查看答案和解析>>


同步练习册答案