题目列表(包括答案和解析)
已知二次函数
,满足不等式
的解集是(-2,0),
(Ⅰ)求
的解析式;
(Ⅱ)若点![]()
在函数
的图象上,且
,令
,
(ⅰ)求证:数列
为等比数列;
(ⅱ)令
,数列
的前
项和为
,是
否存在正实数
使得不等式
对任意
的恒成立? 若存在,求出
的取值范围;若不存在,请说明理由.
已知函数
=
.
(Ⅰ)当
时,求不等式
≥3的解集;
(Ⅱ) 若
≤
的解集包含
,求
的取值范围.
【命题意图】本题主要考查含绝对值不等式的解法,是简单题.
【解析】(Ⅰ)当
时,
=
,
当
≤2时,由
≥3得
,解得
≤1;
当2<
<3时,
≥3,无解;
当
≥3时,由
≥3得
≥3,解得
≥8,
∴
≥3的解集为{
|
≤1或
≥8};
(Ⅱ)
≤![]()
![]()
,
当
∈[1,2]时,
=
=2,
∴
,有条件得
且
,即
,
故满足条件的
的取值范围为[-3,0]
已知二次函数
满足以下两个条件:
①不等式
的解集是(-2,0) ②函数
在![]()
上的最小值是3
(Ⅰ)求
的解析式;
(Ⅱ)若点![]()
在函数
的图象上,且![]()
(ⅰ)求证:数列
为等比数列
(ⅱ)令
,是否存在整数
使得数列
取到最小值?若有,请求出
的值;没有,请说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com