解:当P为真时知. 画图可知当Q为真时 4c>1 从而c得取值范围为 查看更多

 

题目列表(包括答案和解析)

已知两个命题p:直线y=mx+3与圆(x-3)2+(y-2)2=4相交的弦长大于2
3
;q:P(
1
2
,-1),Q(2,1)均在圆x2+y2+mx+y=0内.
(1)当p为真时,求实数m的取值范围;
(2)若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

已知两个命题p:直线y=mx+3与圆(x-3)2+(y-2)2=4相交的弦长大于2
3
;q:P(
1
2
,-1),Q(2,1)均在圆x2+y2+mx+y=0内.
(1)当p为真时,求实数m的取值范围;
(2)若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

设命题p:若y=f(x)为单调增函数,则y=f(ax)(a>0,a≠1)也是单调增函数;命题q:存在实数a,使关于x的方程x2+2x+loga=0无解.当p为真且q为假时,求实数a的取值范围.

查看答案和解析>>

已知函数

(1)求函数的定义域;

(2)求函数在区间上的最小值;

(3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

【解析】第一问中,利用由 即

第二问中,得:

第三问中,由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。

解:(1)由 即

(2)得:

(3)由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时,

当命题p为假,命题q为真时,

所以

 

查看答案和解析>>

已知m∈R,设p:复数z1=(m-1)+(m+3)i (i是虚数单位)在复平面内对应的点在第二象限,q:复数z2=1+(m-2)i的模不超过
10

(1)当p为真命题时,求m的取值范围;
(2)若命题“p且q”为假命题,“p或q”为真命题,求m的取值范围.

查看答案和解析>>


同步练习册答案