4.椭圆的的内外部: (1)点在椭圆的内部 (2)点在椭圆的外部 查看更多

 

题目列表(包括答案和解析)

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的上顶点为A,椭圆C上两点P,Q在x轴上的射影分别为左焦点F1和右焦点F2,直线PQ的斜率为
3
2
,过点A且与AF1垂直的直线与x轴交于点B,△AF1B的外接圆为圆M.
(1)求椭圆的离心率;
(2)直线l:3x+4y+
1
4
a2=0
与圆M相交于E,F两点,且
ME
MF
=-
1
2
a2
,求椭圆方程;
(3)设点N(0,3)在椭圆C内部,若椭圆C上的点到点N的最远距离不大于6
2
,求椭圆C的短轴长的取值范围.

查看答案和解析>>

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的上顶点为A,椭圆C上两点P,Q在x轴上的射影分别为左焦点F1和右焦点F2,直线PQ的斜率为
3
2
,过点A且与AF1垂直的直线与x轴交于点B,△AF1B的外接圆为圆M.
(1)求椭圆的离心率;
(2)直线l:3x+4y+
1
4
a2=0
与圆M相交于E,F两点,且
ME
MF
=-
1
2
a2
,求椭圆方程;
(3)设点N(0,3)在椭圆C内部,若椭圆C上的点到点N的最远距离不大于6
2
,求椭圆C的短轴长的取值范围.

查看答案和解析>>

已知椭圆方程为,P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.

(Ⅰ)求M点的轨迹T的方程;

(Ⅱ)已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

 

查看答案和解析>>

已知椭圆方程为,P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.

(Ⅰ)求M点的轨迹T的方程;

(Ⅱ)已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

已知椭圆方程为,P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.

(Ⅰ)求M点的轨迹T的方程;

(Ⅱ)已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>


同步练习册答案