导数的四则运算法则:设是可导的.则 , . , .若1. . 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知函数

(1)求;         (2)求的最大值与最小值.

【解析】第一问利用导数的运算法则,幂函数的导数公式,可得。

第二问中,利用第一问的导数,令导数为零,得到

然后结合导数,函数的关系判定函数的单调性,求解最值即可。

 

查看答案和解析>>

复数代数形式的四则运算法则

(1)设z1=a+bi,z2=c+di(a、b、c、d∈R),则z1±z2=________,z1·z2=(a+bi)(c+di)=________.

=________.

(2)常用的1±i,ω的运算律:

=________;(1±i)2=________;=________;

=________;in+in+1+in+2+in+3=________(n∈Z);

②设ω,则ω2=________,ω=________,ω·=________,1+ωω2=________,ωnωn+1ωn+2=________(n∈Z).

ω3k=________,ω3k+1=________,ω3k+2=________(k∈Z).

查看答案和解析>>

导数的运算法则

[f(x)±g(x)=_________;

[f(x)·g(x)=_________;

[=_________(g(x)≠0).

查看答案和解析>>

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数f(x)的导数,f″(x)是函数f′(x)的导数,f″(x)是函数f(x)的导数,此时,称f″(x)为原函数f(x)的二阶导数.若二阶导数所对应的方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.
设三次函数f(x)=2x3-3x2-24x+12请你根据上面探究结果,解答以下问题:
①函数f(x)=2x3-3x2-24x+12的对称中心坐标为
(
1
2
,-
1
2
)
(
1
2
,-
1
2
)

②计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)+f(
2013
2013
)
=
-1019
-1019

查看答案和解析>>

设函数f(x)=x3-3ax+b(a≠0),且曲线y=f(x)在点(2,f(x))处与直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.
提示:导数的几何意义是指:函数在该点的导数值等于与曲线相切于该点的切线的斜率k=f/(x)
.
 
x=x 0

查看答案和解析>>


同步练习册答案