已知向量.满足=2.=5. ·=-3.则 +=( ) A. 23 B. 35 C. D. 4﹑设是第三象限角..则是( ) A﹑第一象限角 B﹑第二象限角 C﹑第三象限角 D﹑第四象限角 5 将的图象按向量平移.则平移后所得图象的解析式为( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

本题有(1).(2).(3)三个选做题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4-2:矩阵与变换选做题

已知矩阵A=有一个属于特征值1的特征向量.  

(Ⅰ) 求矩阵A;

(Ⅱ) 矩阵B=,点O(0,0),M(2,-1),N(0,2),求在矩阵AB的对应变换作用下所得到的的面积. 

(2)(本小题满分7分)选修4-4:坐标系与参数方程选做题

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为

(Ⅰ)将曲线的参数方程化为普通方程;(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

(3)(本小题满分7分)选修4-5:不等式选讲选做题

已知函数,不等式上恒成立.

(Ⅰ)求的取值范围;

(Ⅱ)记的最大值为,若正实数满足,求的最大值.

 

查看答案和解析>>

下列5个命题:

(1)函数y=cosx-sinx的图象向左平移个单位,所得函数图象关于原点对称;

(2)若命题p:“存在x∈R,x2-x-1>0”,则命题p的否定为:“任意x∈R,x2-x-1≤0”;

(3)函数f(x)=logx+x2-3的零点有2个;

(4)函数在x=1+处取最小值;

(5)已知直线x-y+a=0与圆x2+y2=1交于不同两点A、B,O为坐标原点,则“a=1”是“向量满足||=||”的充分不必要条件.

其中所有正确命题的序号是________

查看答案和解析>>

下列5个命题:

(1)函数y=cosx-sinx的图象向左平移个单位,所得函数图象关于原点对称;

(2)若命题p:“存在x∈R,x2-x-1>0”,则命题p的否定为:“任意x∈R,x2-x-1≤0”;

(3)函数f(x)=logx+x2-3的零点有2个;

(4)函数在x=1+处取最小值;

(5)已知直线x-y+a=0与圆x2+y2=1交于不同两点A、B,O为坐标原点,则“a=1”是“向量满足||=||”的充分不必要条件.

其中所有正确命题的序号是________

查看答案和解析>>

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>


同步练习册答案