已知直线方程为. (1) 证明:直线恒过定点M, (2) 过定点M作直线L,使夹在两坐标轴之间的线段被点M平分.求直线L的方程; (3) 若直线分别与x轴.y轴的负半轴交于A.B两点.求△AOB面积的最小值及此时 直线的方程. 查看更多

 

题目列表(包括答案和解析)

(本小题12分)已知点分别是射线上的动点,为坐标原点,且的面积为定值2.

(I)求线段中点的轨迹的方程;

(II)过点作直线,与曲线交于不同的两点,与射线分别交于点,试求出直线l的斜率的取值范围,并证明:|PR|=|QS|。

查看答案和解析>>

(本小题12分)已知点分别是射线上的动点,为坐标原点,且的面积为定值2.

(I)求线段中点的轨迹的方程;

(II)过点作直线,与曲线交于不同的两点,与射线分别交于点,试求出直线l的斜率的取值范围,并证明:|PR|=|QS|。

查看答案和解析>>

( 本小题满分12分)

已知点是离心率为的椭圆上的一点.斜率为的直线交椭圆两点,且三点不重合.

(Ⅰ)求椭圆的方程;

(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

(Ⅲ)求证:直线的斜率之和为定值.

查看答案和解析>>

( 本小题满分12分)

已知点是离心率为的椭圆上的一点.斜率为的直线交椭圆两点,且三点不重合.

(Ⅰ)求椭圆的方程;

(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

(Ⅲ)求证:直线的斜率之和为定值.

查看答案和解析>>

( 本小题满分12分)

已知点是离心率为的椭圆上的一点.斜率为的直线交椭圆两点,且三点不重合.

(Ⅰ)求椭圆的方程;

(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

(Ⅲ)求证:直线的斜率之和为定值.

查看答案和解析>>


同步练习册答案