解析:证法一:由正弦定理:得 [sinA+sin(120°-A)]=2sin(A+30°) ∵0°<A<120°.∴30°<A+30°<150° ∴1<2sin(A+30°)≤2. 证法二 ∵B=60°.b=1,∴a2+c2-b2=2accos60° ∴a2+c2-1=ac.∴a2+c2-ac=1,∴(a+c)2+3(a-c)2=4 ∴(a+c)2=4-3(a-c)2,∵0≤a-c<1 ∴0≤3(a-c)2<3,∴4-3(a-c)2≤4 即(a+c)2≤4,∴a+c≤2. 又a+c>1 ∴1<a+c≤2. 查看更多

 

题目列表(包括答案和解析)

(2012•普陀区一模)给出问题:已知△ABC满足a•cosA=b•cosB,试判断△ABC的形状,某学生的解答如下:
(i)a•
b2+c2-a2
2bc
=b•
a2+c2-b2
2ac
?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)设△ABC外接圆半径为R,由正弦定理可得,原式等价于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
综上可知,△ABC是等腰直角三角形.
请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果
等腰或直角三角形
等腰或直角三角形

查看答案和解析>>

D

解析:由正弦定理得.又由椭圆定义得AB+BC=2×5=10.AC=8. 所以

查看答案和解析>>

已知函数.]

(1)求函数的最小值和最小正周期;

(2)设的内角的对边分别为,且

,求的值.

【解析】第一问利用

得打周期和最值

第二问

 

,由正弦定理,得,①  

由余弦定理,得,即,②

由①②解得

 

查看答案和解析>>

D

解析:由正弦定理得.又由椭圆定义得AB+BC=2×5=10.AC=8. 所以

查看答案和解析>>

D

解析:由正弦定理得.又由椭圆定义得AB+BC=2×5=10.AC=8. 所以

查看答案和解析>>


同步练习册答案