椭圆的短轴长为2, 长轴是短轴长的2倍, 则椭圆的中心到其准线的距离为 ( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

若椭圆的短轴长为4,它的一个焦点是(2,0),则该椭圆的标准方程是(  )

A.=1       B.="1"      C.="1"      D.=1

 

查看答案和解析>>

已知椭圆()的短轴长为2,离心率为.过点M(2,0)的直线与椭圆相交于两点,为坐标原点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若点关于轴的对称点是,证明:直线恒过一定点.

查看答案和解析>>

已知椭圆的短轴长为2,焦点坐标分别是(-1,0)和(1,0).
(1)求这个椭圆的标准方程;
(2)如果直线y=x+m与这个椭圆交于不同的两点A,B,求m的取值范围;
(3)若(2)中m=1,求该直线与此椭圆相交所得弦长|AB|的值.

查看答案和解析>>

已知椭圆的短轴长为2,焦点坐标分别是(-1,0)和(1,0),
(1)求这个椭圆的标准方程;
(2)如果直线y=x+m与这个椭圆交于不同的两点,求m的取值范围.

查看答案和解析>>

已知椭圆的短轴长为2,且与抛物线有共同的焦点,椭圆C的左顶点为A,右顶点为B,点P是椭圆C上位于x轴上方的动点,直线AP,BP与直线y=3分别交于G,H两点.
(I)求椭圆C的方程;
(Ⅱ)求线段GH的长度的最小值;
(Ⅲ)在线段GH的长度取得最小值时,椭圆C上是否存在一点T,使得△TPA的面积为1,若存在求出点T的坐标,若不存在,说明理由.

查看答案和解析>>


同步练习册答案