已知曲线(为参数).如果与直线有公共点.那么实数的取值范围是 . 查看更多

 

题目列表(包括答案和解析)

 本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.作

(1)选修4—2:矩阵与变换

若二阶矩阵满足.

(Ⅰ)求二阶矩阵

(Ⅱ)把矩阵所对应的变换作用在曲线上,求所得曲线的方程.

(2)选修4-4:坐标系与参数方程

已知在直角坐标系中,曲线的参数方程为(t为非零常数,为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的方程为.

(Ⅰ)求曲线C的普通方程并说明曲线的形状;

(Ⅱ)是否存在实数,使得直线与曲线C有两个不同的公共点,且(其中为坐标原点)?若存在,请求出;否则,请说明理由.

(3)选修4—5:不等式选讲

已知函数的最小值为,实数满足.

(Ⅰ)求的值;

(Ⅱ)求证:

 

 

 

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4—2:矩阵与变换

在平面直角坐标系中,把矩阵确定的压缩变换与矩阵确定的旋转变换进行复合,得到复合变换

(Ⅰ)求复合变换的坐标变换公式;

(Ⅱ)求圆在复合变换的作用下所得曲线的方程.

(2)(本小题满分7分)选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),分别为直线轴、轴的交点,线段的中点为

(Ⅰ)求直线的直角坐标方程;

(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求点的极坐标和直线的极坐标方程.

(3)(本小题满分7分)选修4—5:不等式选讲

已知不等式的解集与关于的不等式的解集相等.

(Ⅰ)求实数的值;

(Ⅱ)求函数的最大值,以及取得最大值时的值.

 

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4—2:矩阵与变换
在平面直角坐标系中,把矩阵确定的压缩变换与矩阵确定的旋转变换进行复合,得到复合变换
(Ⅰ)求复合变换的坐标变换公式;
(Ⅱ)求圆在复合变换的作用下所得曲线的方程.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为为参数),分别为直线轴、轴的交点,线段的中点为
(Ⅰ)求直线的直角坐标方程;
(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求点的极坐标和直线的极坐标方程.
(3)(本小题满分7分)选修4—5:不等式选讲
已知不等式的解集与关于的不等式的解集相等.
(Ⅰ)求实数的值;
(Ⅱ)求函数的最大值,以及取得最大值时的值.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4—2:矩阵与变换
在平面直角坐标系中,把矩阵确定的压缩变换与矩阵确定的旋转变换进行复合,得到复合变换
(Ⅰ)求复合变换的坐标变换公式;
(Ⅱ)求圆在复合变换的作用下所得曲线的方程.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为为参数),分别为直线轴、轴的交点,线段的中点为
(Ⅰ)求直线的直角坐标方程;
(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求点的极坐标和直线的极坐标方程.
(3)(本小题满分7分)选修4—5:不等式选讲
已知不等式的解集与关于的不等式的解集相等.
(Ⅰ)求实数的值;
(Ⅱ)求函数的最大值,以及取得最大值时的值.

查看答案和解析>>


同步练习册答案