已知点P(1,2).OP是等腰直角三角形OAB斜边上AB的高.O是坐标原点.求△OAB三边所在直线方程. 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:=1(a>b>0)的离心率为,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|==,其中O为坐标原点.Q为椭圆的左顶点.
(1)求椭圆C的方程;
(2)过点S(-,0),且斜率为k的动直线l交椭圆于A、B两点,是否存在直线l,使得VQAB为等腰三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=
15
2
PF1
PF2
=
3
4
,其中O为坐标原点.Q为椭圆的左顶点.
(1)求椭圆C的方程;
(2)过点S(-
6
5
,0),且斜率为k的动直线l交椭圆于A、B两点,是否存在直线l,使得VQAB为等腰三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=
15
2
PF1
PF2
=
3
4
,其中O为坐标原点.Q为椭圆的左顶点.
(1)求椭圆C的方程;
(2)过点S(-
6
5
,0),且斜率为k的动直线l交椭圆于A、B两点,是否存在直线l,使得VQAB为等腰三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

已知椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)的两焦点与短轴的一个端点连结成等腰直角三角形,直线l:x-y-b=0是抛物线x2=4y的一条切线.
(1)求椭圆方程;
(2)直线l交椭圆C于A、B两点,若点P满足
OP
+
OA
+
OB
=
0
(O为坐标原点),判断点P是否在椭圆C上,并说明理由.

查看答案和解析>>

已知椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)的两焦点与短轴的一个端点连结成等腰直角三角形,直线l:x-y-b=0是抛物线x2=4y的一条切线.
(1)求椭圆方程;
(2)直线l交椭圆C于A、B两点,若点P满足
OP
+
OA
+
OB
=
0
(O为坐标原点),判断点P是否在椭圆C上,并说明理由.

查看答案和解析>>


同步练习册答案