如图.已知椭圆的离心率分别为椭圆C的左.右焦点.A(0.b).且过左焦点F1作直线l交椭圆于P1.P2两点. (1)求椭圆C的方程, (2)若直线l的倾斜角.直线 与直线分别交于点S.T.求的取值范围. 福建师大附中09-10学年高二上学期期末考试卷 查看更多

 

题目列表(包括答案和解析)

如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左右焦点F1、F2为顶点的三角形的周长为。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的焦点分别为A、B和C、D。

(1)求椭圆和双曲线的标准方程

(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1

(3)是否存在常数,使得|AB|+|CD|=|AB|·|CD|恒成立?

若存在,求的值,若不存在,请说明理由。

 

查看答案和解析>>

如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左右焦点F1、F2为顶点的三角形的周长为。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的焦点分别为A、B和C、D。

(Ⅰ)求椭圆和双曲线的标准方程

(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1

(Ⅲ)是否存在常数,使得|AB|+|CD|=|AB|·|CD|恒成立?若存在,求的值,若不存在,请说明理由。

 

 

 

查看答案和解析>>

(本小题满分13分)

  如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的

  左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭

  圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点

  分别 为

   (Ⅰ)求椭圆和双曲线的标准方程; 

   (Ⅱ)设直线的斜率分别为,证明

   (Ⅲ)是否存在常数,使得恒成立?

      若存在,求的值;若不存在,请说明理由.

                                                             

查看答案和解析>>

如图,已知椭圆的离心率为,且经过点平行于的直线轴上的截距为与椭圆有A、B两个

不同的交点

   (Ⅰ) 求椭圆的方程;

    (Ⅱ)  求的取值范围;                              

   (III)求证:直线轴始终围成一个等腰三角形.

 

查看答案和解析>>

(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线的斜率分别为,证明
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案