点位于椭圆内.过点的直线与椭圆交于两点..且点为线段的中点.求直线的方程及的值. 查看更多

 

题目列表(包括答案和解析)

椭圆的一条弦PQ过它的右焦点且垂直于x轴,以线段PQ为直径作圆C,则点A(a,0)与圆C的位置关系是

[    ]

A.点A在圆C内   B.点A在圆C上

C.点A在圆C外   D.以上三种情况都可能

查看答案和解析>>

设椭圆C:=1(a>b>0)过点(1,),F1、F2分别为椭圆C的左、右两个焦点,且离心率e=.

(1)求椭圆C的方程;

(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M、N两点,若AM、AN的斜率k1,k2满足k1+k2=,求直线l的方程;

(3)已知P是椭圆C上位于第一象限内的点,△PF1F2的重心为G,内心为I,求证:IG∥F1F2.

查看答案和解析>>

已知椭圆
x2
m
+
y2
n
=1
,常数m、n∈R+,且m>n.
(1)当m=25,n=21时,过椭圆左焦点F的直线交椭圆于点P,与y轴交于点Q,若
QF
=2
FP
,求直线PQ的斜率;
(2)过原点且斜率分别为k和-k(k≥1)的两条直线与椭圆
x2
m
+
y2
n
=1
的交点为A、B、C、D(按逆时针顺序排列,且点A位于第一象限内),试用k表示四边形ABCD的面积S;
(3)求S的最大值.

查看答案和解析>>

已知椭圆 
x2
m
+
y2
n
=1
(常数m、n∈R+,且m>n)的左右焦点分别为F1,F2 ,M、N为短轴的两个端点,且四边形F1MF2N是边长为2的正方形.
(Ⅰ)求椭圆方程;
(Ⅱ)过原点且斜率分别为k和-k(k≥2)的两条直线与椭圆
x2
m
+
y2
n
=1
的交点为A、B、C、D(按逆时针顺序排列,且点A位于第一象限内),求四边形ABCD的面积S的最大值..

查看答案和解析>>

已知椭圆 数学公式(常数m、n∈R+,且m>n)的左右焦点分别为F1,F2 ,M、N为短轴的两个端点,且四边形F1MF2N是边长为2的正方形.
(Ⅰ)求椭圆方程;
(Ⅱ)过原点且斜率分别为k和-k(k≥2)的两条直线与椭圆 数学公式的交点为A、B、C、D(按逆时针顺序排列,且点A位于第一象限内),求四边形ABCD的面积S的最大值..

查看答案和解析>>


同步练习册答案