19.A.B两辆汽车同时从同一位置由静止出发.每辆车都是开始做匀加速直线运动.各自达到某一速度后就做匀速运动.匀速运动时A的速度与B的速度之比为5:4.行驶中在某一时刻两车的速度相等.从出发到这一时刻B的位移与A的位移之比为5:4.则A车匀加速时的加速度与B车匀加速时的加速度之比为 ( ) A.1:2 B.2:3 C.3:4 D.4:5 查看更多

 

题目列表(包括答案和解析)

(2011?河东区一模)(1)一辆汽车在平直的公路上以某一初速度运动,运动过程中保持恒定的牵引功率,其加速度a和速度的倒数(1/v)图象如图所示.若已知汽车的质量为m=1.5×103kg,则汽车运行时的功率为
60
60
kW,所受到的阻力为
3.0
×10
3
 
3.0
×10
3
 
N.
(2)某实验小组利用如图甲所示的气垫导轨实验装置来探究合力一定时,物体的加速度与质量之间的关系.
①做实验时,将滑块从图甲所示位置由静止释放,由数字计时器(图中未画出)可读出遮光条通过光电门1、2的时间分别为△t1、△t2;用刻度尺测得两个光电门中心之间的距离x,用游标卡尺测得遮光条宽度d.则滑块加速度的表达式a=
d
2
 
△t
2
2
-
d
2
 
△t
2
1
2x
d
2
 
△t
2
2
-
d
2
 
△t
2
1
2x
.(以上表达式均用已知字母表示).
如图乙所示,若用20分度的游标卡尺测量遮光条的宽度,其读数为
8.15
8.15
mm.

②为了保持滑块所受的合力不变,可改变滑块质量M和气垫导轨右端高度h(见图甲).关于“改变滑块质量M和气垫导轨右端的高度h”的正确操作方法是
BC
BC

A.M增大时,h增大,以保持二者乘积增大
B.M增大时,h减小,以保持二者乘积不变
C.M减小时,h增大,以保持二者乘积不变
D.M减小时,h减小,以保持二者乘积减小
(3)(8分)2010年诺贝尔物理学奖授予英国曼彻斯特大学科学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,以表彰他们对石墨烯的研究.他们最初是用透明胶带从石墨晶体上“粘”出一片石墨烯的.我们平常所用的铅笔芯中就含有石墨,能导电.某同学设计了探究铅笔芯伏安特性曲线的实验,得到如下数据(I和U分别表示通过铅笔芯的电流和其两端的电压):
U/V 0.00 0.40 0.80 1.20 1.60 2.00
I/A 0.00 0.10 0.18 0.28 0.38 0.48
实验室提供如下器材:
A.电流表A1(量程0.6A,内阻约为1.0Ω)
B.电流表A2(量程3A,内阻约为0.1Ω)
C.电压表V1(量程3V,内阻3kΩ)
D.电压表V2(量程15V,内阻15kΩ)
E.滑动变阻器R1(阻值0~10Ω,额定电流2A)
F.滑动变阻器R2(阻值0~2kΩ,额定电流0.5A)
①除长约14cm的中华绘图2B铅笔芯、稳压直流电源E(6V)、开关和带夹子的导线若干外,还需选用的其它器材有
ACE
ACE
(填选项前字母);
②在虚线方框中画出实验电路图;
③根据表格中数据在坐标纸上画出铅笔芯的I-U图线.

查看答案和解析>>

一辆小汽车a以20m/s的速度行驶在平直调整公路上突然发现正前方17m处有一辆大卡车b,从静止开始向同方向匀加速行驶,小汽车紧急刹车,刹车过程中“刹车失灵”.如图a、b分别为小汽车和大卡车的v-t图象,将两车看成质点,下列说法正确的是(  )

A.在t=2s时两车恰好到达同一位置
B.因刹车失灵前小汽车已减速,不会追尾
C.由于初始距离太近,即使刹车不失灵也会追尾
D.若不发生追尾事故两车之间的距离至少应为17.5米

查看答案和解析>>

一辆小汽车a以20m/s的速度行驶在平直调整公路上突然发现正前方17m处有一辆大卡车b,从静止开始向同方向匀加速行驶,小汽车紧急刹车,刹车过程中“刹车失灵”.如图a、b分别为小汽车和大卡车的v-t图象,将两车看成质点,下列说法正确的是(  )

A.在t=2s时两车恰好到达同一位置

B.因刹车失灵前小汽车已减速,不会追尾

C.由于初始距离太近,即使刹车不失灵也会追尾

D.若不发生追尾事故两车之间的距离至少应为17.5米

 

查看答案和解析>>

一辆小汽车a以20m/s的速度行驶在平直调整公路上突然发现正前方17m处有一辆大卡车b,从静止开始向同方向匀加速行驶,小汽车紧急刹车,刹车过程中“刹车失灵”.如图a、b分别为小汽车和大卡车的v-t图象,将两车看成质点,下列说法正确的是(  )
A.在t=2s时两车恰好到达同一位置
B.因刹车失灵前小汽车已减速,不会追尾
C.由于初始距离太近,即使刹车不失灵也会追尾
D.若不发生追尾事故两车之间的距离至少应为17.5米

查看答案和解析>>

第三部分 运动学

第一讲 基本知识介绍

一. 基本概念

1.  质点

2.  参照物

3.  参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)

4.绝对运动,相对运动,牵连运动:v=v+v 

二.运动的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大学教材中表述为:v=dr/dt, 表示r对t 求导数

5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是

三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。)

6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好

三.等加速运动

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。此抛物线为在大炮上方h=v2/2g处,以v0平抛物体的轨迹。) 

练习题:

一盏灯挂在离地板高l2,天花板下面l1处。灯泡爆裂,所有碎片以同样大小的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。)

四.刚体的平动和定轴转动

1. 我们讲过的圆周运动是平动而不是转动 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是标量,而极小的角位移是矢量

4.  同一刚体上两点的相对速度和相对加速度 

两点的相对距离不变,相对运动轨迹为圆弧,VA=VB+VAB,在AB连线上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三质点速度分别V,VB  ,VC      

求G的速度。

五.课后习题:

一只木筏离开河岸,初速度为V,方向垂直于岸边,航行路线如图。经过时间T木筏划到路线上标有符号处。河水速度恒定U用作图法找到在2T,3T,4T时刻木筏在航线上的确切位置。

五、处理问题的一般方法

(1)用微元法求解相关速度问题

例1:如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D,BC段水平,当以恒定水平速度v拉绳上的自由端时,A沿水平面前进,求当跨过B的两段绳子的夹角为α时,A的运动速度。

(vA

(2)抛体运动问题的一般处理方法

  1. 平抛运动
  2. 斜抛运动
  3. 常见的处理方法

(1)将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动

(2)将沿斜面和垂直于斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题

(3)将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解

例2:在掷铅球时,铅球出手时距地面的高度为h,若出手时的速度为V0,求以何角度掷球时,水平射程最远?最远射程为多少?

(α=、 x=

第二讲 运动的合成与分解、相对运动

(一)知识点点拨

  1. 力的独立性原理:各分力作用互不影响,单独起作用。
  2. 运动的独立性原理:分运动之间互不影响,彼此之间满足自己的运动规律
  3. 力的合成分解:遵循平行四边形定则,方法有正交分解,解直角三角形等
  4. 运动的合成分解:矢量合成分解的规律方法适用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

参考系的转换:动参考系,静参考系

相对运动:动点相对于动参考系的运动

绝对运动:动点相对于静参考系统(通常指固定于地面的参考系)的运动

牵连运动:动参考系相对于静参考系的运动

(5)位移合成定理:SA对地=SAB+SB对地

速度合成定理:V绝对=V相对+V牵连

加速度合成定理:a绝对=a相对+a牵连

(二)典型例题

(1)火车在雨中以30m/s的速度向南行驶,雨滴被风吹向南方,在地球上静止的观察者测得雨滴的径迹与竖直方向成21角,而坐在火车里乘客看到雨滴的径迹恰好竖直方向。求解雨滴相对于地的运动。

提示:矢量关系入图

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定楼梯,又以不同方式上了两趟自动扶梯,为什么他可以根据测得的数据来计算自动扶梯的台阶数?

提示:V人对梯=n1/t1

      V梯对地=n/t2

      V人对地=n/t3

V人对地= V人对梯+ V梯对地

答案:n=t2t3n1/(t2-t3)t1

(3)某人驾船从河岸A处出发横渡,如果使船头保持跟河岸垂直的方向航行,则经10min后到达正对岸下游120m的C处,如果他使船逆向上游,保持跟河岸成а角的方向航行,则经过12.5min恰好到达正对岸的B处,求河的宽度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河宽l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少?

提示:如图船航行

答案:1.58m/s

(三)同步练习

1.一辆汽车的正面玻璃一次安装成与水平方向倾斜角为β1=30°,另一次安装成倾角为β2=15°。问汽车两次速度之比为多少时,司机都是看见冰雹都是以竖直方向从车的正面玻璃上弹开?(冰雹相对地面是竖直下落的)

2、模型飞机以相对空气v=39km/h的速度绕一个边长2km的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间?

3.图为从两列蒸汽机车上冒出的两股长幅气雾拖尾的照片(俯视)。两列车沿直轨道分别以速度v1=50km/h和v2=70km/h行驶,行驶方向如箭头所示,求风速。

4、细杆AB长L ,两端分别约束在x 、 y轴上运动,(1)试求杆上与A点相距aL(0< a <1)的P点运动轨迹;(2)如果vA为已知,试求P点的x 、 y向分速度vPx和vPy对杆方位角θ的函数。

(四)同步练习提示与答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案为:3。

2、提示:三角形各边的方向为飞机合速度的方向(而非机头的指向);

第二段和第三段大小相同。

参见右图,显然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法与练习一类似。答案为:3

4、提示:(1)写成参数方程后消参数θ。

(2)解法有讲究:以A端为参照, 则杆上各点只绕A转动。但鉴于杆子的实际运动情形如右图,应有v = vAcosθ,v = vA,可知B端相对A的转动线速度为:v + vAsinθ=  

P点的线速度必为  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,为椭圆;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>


同步练习册答案