22.如图所示.平板A长L=5m.质量M=5kg.放在水平桌面上.板右端与桌边相齐.在A上距右端s=3m处放一物体B(大小可忽略.即可看成质点).其质量m=2kg.已知A.B间动摩擦因数μ1=0.1.A与桌面间和B与桌面间的动摩擦因数μ2=0.2.原来系统静止. 现在在板的右端施一大小一定的水平力F持续作用在物体A上直到将A从B下抽出才撤去.且使B最后停于桌的右边缘.(g =10m / s2 ) 求:(1)物体B运动的时间是多少? (2)力F的大小为多少? 查看更多

 

题目列表(包括答案和解析)

(选修3-5选做题)
如图所示,光滑的水平面上有两块相同的长木板A和B,长为l=0.5m,在B的右端有一个可以看作质点的小铁块C,三者的质量都为m,C与A、B间的动摩擦因数都为μ。现在A以速度ν0=6m/s向右运动并与B相碰,撞击时间极短,碰后A、B粘在一起运动,而C可以在A、B上滑动,问:如果μ=0.5,则C会不会掉下地面?

查看答案和解析>>

 【选做题】请从A、B和C三小题中选定两小题作答,如都作答则按A、B两题评分.

A.(选修模块3-3)(12分)

.1.一定质量的理想气体状态变化过程如图所示,第1种变化是从A

B,第2种变化是从AC,比较两种变化过程则:  ▲  

A.AC过程气体吸收热量较多 

B.A到B过程气体吸收热量较多

C.两个过程气体吸收热量一样 

D.两个过程气体内能增加相同

.2.某人做一次深呼吸,吸进400cm3的空气,据此估算他吸入的空气分子总数约为  ▲  个(取一位有效数字,NA =6.02×1023 mol-1)。

.3.在一个恒定标准大气压P=1.0×105 Pa下,水在沸腾时,1g的水由液态变成同温度的气态,其体积由1.0 cm3变为1701 cm3。已知水的汽化热为L=2264J/g。则体积膨胀时气体对外做的功为  ▲  ;气体吸收的热量为   ▲  ;气体的内能变化量为    ▲   

B.(选修模块3-4)(12分)

.1、ABC是三个完全相同的时钟,A放在地面上,BC分别放在两个火箭上,以速度vbvc朝同一方向飞行,vbvc。在地面上的人看来,关于时钟快慢的说法正确的是

A.B钟最快,C钟最慢           B.A钟最快,C钟最慢

C.C钟最快,B钟最慢           D.A钟最快,B钟最慢

.2、一列沿x轴正方向传播的简谐波,在 t = 0时刻刚好到达x = 2m处,该波的波长

m,此时x = 1m 处的质点振动方向为  ▲  (选填“y轴正方向”或“ y轴负方向”),已知该波的速度为v = 4m/s,则经  ▲  s时间x = 5m处的质点第一次到达波峰.

 

 

 

 

 

 


.3、如图为一圆柱形的玻璃棒过中心轴线的剖面图,该玻璃的折射率为n = ,现有一束光线lAB面射入,入射角θ = 60°,则折射角α=   ,该束光线能否从 AD边射出    ▲    (填“能”或“不能”)

C.(选修模块3-5)(12分)

.1、太阳以“核燃烧” 的方式向外界释放能量,这种燃烧过程使太阳的“体重”每秒钟减少400万吨,这里“核燃烧”是指    ▲     

A.重核裂变        B.轻核聚变        C.原子能级跃迁       D.衰变

.2、在研究光电效应实验中,铝的逸出功为4.2ev,现用波长为200nm的光线照射铝板,则光电子的最大初动能为ev,若增加该入射光的强度,则单位时间内从铝板表面逸出的光电子数 ▲  。(填“增加”、“减少”或“不变”) (普朗克常量h=6.30×10-34 J·S,结果保留两位有效数字)

.3、质量相等且m1m2都等于1kg的两个小球在光滑的水平面上

分别以速度v1=2m/s、v2=1m/s同向运动并发生对心碰撞,碰后

m2被右侧的墙原速弹回,又与m1相碰,碰后两球都静止。求

两球第一次碰后m2球的速度大小。    

 

查看答案和解析>>

 【选做题】请从A、B和C三小题中选定两小题作答,如都作答则按A、B两题评分.

A.(选修模块3-3)(12分)

.1.一定质量的理想气体状态变化过程如图所示,第1种变化是从A

B,第2种变化是从AC,比较两种变化过程则:  ▲  

A.AC过程气体吸收热量较多 

B.A到B过程气体吸收热量较多

C.两个过程气体吸收热量一样 

D.两个过程气体内能增加相同

.2.某人做一次深呼吸,吸进400cm3的空气,据此估算他吸入的空气分子总数约为   ▲  个(取一位有效数字,NA = 6.02×1023 mol-1)。

.3.在一个恒定标准大气压P=1.0×105 Pa下,水在沸腾时,1g的水由液态变成同温度的气态,其体积由1.0 cm3变为1701 cm3。已知水的汽化热为L=2264J/g。则体积膨胀时气体对外做的功为  ▲  ;气体吸收的热量为   ▲   ;气体的内能变化量为    ▲   

B.(选修模块3-4)(12分)

.1、ABC是三个完全相同的时钟,A放在地面上,BC分别放在两个火箭上,以速度vbvc朝同一方向飞行,vbvc。在地面上的人看来,关于时钟快慢的说法正确的是

A.B钟最快,C钟最慢           B.A钟最快,C钟最慢

C.C钟最快,B钟最慢           D.A钟最快,B钟最慢

.2、一列沿x轴正方向传播的简谐波,在 t = 0时刻刚好到达x = 2m处,该波的波长

m,此时x = 1m 处的质点振动方向为  ▲  (选填“y轴正方向”或“ y轴负方向”),已知该波的速度为v = 4m/s,则经  ▲  s时间x = 5m处的质点第一次到达波峰.

 

 

 

 

 

 


.3、如图为一圆柱形的玻璃棒过中心轴线的剖面图,该玻璃的折射率为n = ,现有一束光线lAB面射入,入射角θ = 60°,则折射角α =   ,该束光线能否从 AD边射出    ▲    (填“能”或“不能”)

C.(选修模块3-5)(12分)

.1、太阳以“核燃烧” 的方式向外界释放能量,这种燃烧过程使太阳的“体重”每秒钟减少400万吨,这里“核燃烧”是指    ▲     

A.重核裂变        B.轻核聚变        C.原子能级跃迁       D.衰变

.2、在研究光电效应实验中,铝的逸出功为4.2ev,现用波长为200nm的光线照射铝板,则光电子的最大初动能为ev,若增加该入射光的强度,则单位时间内从铝板表面逸出的光电子数  ▲  。(填“增加”、“减少”或“不变”) (普朗克常量h=6.30×10-34 J·S,结果保留两位有效数字)

.3、质量相等且m1m2都等于1kg的两个小球在光滑的水平面上

分别以速度v1=2m/s、v2=1m/s同向运动并发生对心碰撞,碰后

m2被右侧的墙原速弹回,又与m1相碰,碰后两球都静止。求

两球第一次碰后m2球的速度大小。    

 

查看答案和解析>>

第三部分 运动学

第一讲 基本知识介绍

一. 基本概念

1.  质点

2.  参照物

3.  参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)

4.绝对运动,相对运动,牵连运动:v=v+v 

二.运动的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大学教材中表述为:v=dr/dt, 表示r对t 求导数

5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是

三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。)

6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好

三.等加速运动

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。此抛物线为在大炮上方h=v2/2g处,以v0平抛物体的轨迹。) 

练习题:

一盏灯挂在离地板高l2,天花板下面l1处。灯泡爆裂,所有碎片以同样大小的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。)

四.刚体的平动和定轴转动

1. 我们讲过的圆周运动是平动而不是转动 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是标量,而极小的角位移是矢量

4.  同一刚体上两点的相对速度和相对加速度 

两点的相对距离不变,相对运动轨迹为圆弧,VA=VB+VAB,在AB连线上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三质点速度分别V,VB  ,VC      

求G的速度。

五.课后习题:

一只木筏离开河岸,初速度为V,方向垂直于岸边,航行路线如图。经过时间T木筏划到路线上标有符号处。河水速度恒定U用作图法找到在2T,3T,4T时刻木筏在航线上的确切位置。

五、处理问题的一般方法

(1)用微元法求解相关速度问题

例1:如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D,BC段水平,当以恒定水平速度v拉绳上的自由端时,A沿水平面前进,求当跨过B的两段绳子的夹角为α时,A的运动速度。

(vA

(2)抛体运动问题的一般处理方法

  1. 平抛运动
  2. 斜抛运动
  3. 常见的处理方法

(1)将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动

(2)将沿斜面和垂直于斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题

(3)将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解

例2:在掷铅球时,铅球出手时距地面的高度为h,若出手时的速度为V0,求以何角度掷球时,水平射程最远?最远射程为多少?

(α=、 x=

第二讲 运动的合成与分解、相对运动

(一)知识点点拨

  1. 力的独立性原理:各分力作用互不影响,单独起作用。
  2. 运动的独立性原理:分运动之间互不影响,彼此之间满足自己的运动规律
  3. 力的合成分解:遵循平行四边形定则,方法有正交分解,解直角三角形等
  4. 运动的合成分解:矢量合成分解的规律方法适用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

参考系的转换:动参考系,静参考系

相对运动:动点相对于动参考系的运动

绝对运动:动点相对于静参考系统(通常指固定于地面的参考系)的运动

牵连运动:动参考系相对于静参考系的运动

(5)位移合成定理:SA对地=SAB+SB对地

速度合成定理:V绝对=V相对+V牵连

加速度合成定理:a绝对=a相对+a牵连

(二)典型例题

(1)火车在雨中以30m/s的速度向南行驶,雨滴被风吹向南方,在地球上静止的观察者测得雨滴的径迹与竖直方向成21角,而坐在火车里乘客看到雨滴的径迹恰好竖直方向。求解雨滴相对于地的运动。

提示:矢量关系入图

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定楼梯,又以不同方式上了两趟自动扶梯,为什么他可以根据测得的数据来计算自动扶梯的台阶数?

提示:V人对梯=n1/t1

      V梯对地=n/t2

      V人对地=n/t3

V人对地= V人对梯+ V梯对地

答案:n=t2t3n1/(t2-t3)t1

(3)某人驾船从河岸A处出发横渡,如果使船头保持跟河岸垂直的方向航行,则经10min后到达正对岸下游120m的C处,如果他使船逆向上游,保持跟河岸成а角的方向航行,则经过12.5min恰好到达正对岸的B处,求河的宽度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河宽l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少?

提示:如图船航行

答案:1.58m/s

(三)同步练习

1.一辆汽车的正面玻璃一次安装成与水平方向倾斜角为β1=30°,另一次安装成倾角为β2=15°。问汽车两次速度之比为多少时,司机都是看见冰雹都是以竖直方向从车的正面玻璃上弹开?(冰雹相对地面是竖直下落的)

2、模型飞机以相对空气v=39km/h的速度绕一个边长2km的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间?

3.图为从两列蒸汽机车上冒出的两股长幅气雾拖尾的照片(俯视)。两列车沿直轨道分别以速度v1=50km/h和v2=70km/h行驶,行驶方向如箭头所示,求风速。

4、细杆AB长L ,两端分别约束在x 、 y轴上运动,(1)试求杆上与A点相距aL(0< a <1)的P点运动轨迹;(2)如果vA为已知,试求P点的x 、 y向分速度vPx和vPy对杆方位角θ的函数。

(四)同步练习提示与答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案为:3。

2、提示:三角形各边的方向为飞机合速度的方向(而非机头的指向);

第二段和第三段大小相同。

参见右图,显然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法与练习一类似。答案为:3

4、提示:(1)写成参数方程后消参数θ。

(2)解法有讲究:以A端为参照, 则杆上各点只绕A转动。但鉴于杆子的实际运动情形如右图,应有v = vAcosθ,v = vA,可知B端相对A的转动线速度为:v + vAsinθ=  

P点的线速度必为  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,为椭圆;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>


同步练习册答案