15.图8中.木块A和B用一轻弹簧相连.竖直放在木块C上. 三者静止于地面.它们的质量之比是1:2:3.设所有接触面 都光滑.当沿水平方向迅速抽出木块C的瞬间.A和B的加速 度分别是aA= .aB= . 查看更多

 

题目列表(包括答案和解析)

如图所示,木块A放在水平桌面上,其右端用一轻绳水平跨过一光滑定滑轮,绳的下端与一托盘相连;其左端与一轻质弹簧秤水平相连,弹簧秤的另一端固定在墙壁上.当所挂的砝码和托盘的总质量为0.8 kg时,木块A处于静止状态,此时弹簧秤的读数为2 N.若轻轻取走盘中的部分砝码,使总质量减少到0.4 kg,将会出现的情况是

A.弹簧秤的读数将变小

B.

A仍然静止不动

C.

A对桌面的摩擦力将变小

D.

A所受的合力将变大

查看答案和解析>>

第六部分 振动和波

第一讲 基本知识介绍

《振动和波》的竞赛考纲和高考要求有很大的不同,必须做一些相对详细的补充。

一、简谐运动

1、简谐运动定义:= -k             

凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。

谐振子的加速度:= -

2、简谐运动的方程

回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x方向的投影),圆周运动的半径即为简谐运动的振幅A 。

依据:x = -mω2Acosθ= -mω2

对于一个给定的匀速圆周运动,m、ω是恒定不变的,可以令:

2 = k 

这样,以上两式就符合了简谐运动的定义式①。所以,x方向的位移、速度、加速度就是简谐运动的相关规律。从图1不难得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相关名词:(ωt +φ)称相位,φ称初相。

运动学参量的相互关系:= -ω2

A = 

tgφ= -

3、简谐运动的合成

a、同方向、同频率振动合成。两个振动x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振动x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

显然,当φ2-φ1 = 2kπ时(k = 0,±1,±2,…),合振幅A最大,当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同频率振动合成。当质点同时参与两个垂直的振动x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t后,得一般形式的轨迹方程为

+-2cos(φ2-φ1) = sin22-φ1)

显然,当φ2-φ1 = 2kπ时(k = 0,±1,±2,…),有y = x ,轨迹为直线,合运动仍为简谐运动;

当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),有+= 1 ,轨迹为椭圆,合运动不再是简谐运动;

当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。

c、同方向、同振幅、频率相近的振动合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合运动x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合运动是振动,但不是简谐运动,称为角频率为的“拍”现象。

4、简谐运动的周期

由②式得:ω=  ,而圆周运动的角速度和简谐运动的角频率是一致的,所以

T = 2π                                                      

5、简谐运动的能量

一个做简谐运动的振子的能量由动能和势能构成,即

mv2 + kx2 = kA2

注意:振子的势能是由(回复力系数)k和(相对平衡位置位移)x决定的一个抽象的概念,而不是具体地指重力势能或弹性势能。当我们计量了振子的抽象势能后,其它的具体势能不能再做重复计量。

6、阻尼振动、受迫振动和共振

和高考要求基本相同。

二、机械波

1、波的产生和传播

产生的过程和条件;传播的性质,相关参量(决定参量的物理因素)

2、机械波的描述

a、波动图象。和振动图象的联系

b、波动方程

如果一列简谐波沿x方向传播,振源的振动方程为y = Acos(ωt + φ),波的传播速度为v ,那么在离振源x处一个振动质点的振动方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

这个方程展示的是一个复变函数。对任意一个时刻t ,都有一个y(x)的正弦函数,在x-y坐标下可以描绘出一个瞬时波形。所以,称y = Acos〔ω(t - )+ φ〕为波动方程。

3、波的干涉

a、波的叠加。几列波在同一介质种传播时,能独立的维持它们的各自形态传播,在相遇的区域则遵从矢量叠加(包括位移、速度和加速度的叠加)。

b、波的干涉。两列波频率相同、相位差恒定时,在同一介质中的叠加将形成一种特殊形态:振动加强的区域和振动削弱的区域稳定分布且彼此隔开。

我们可以用波程差的方法来讨论干涉的定量规律。如图2所示,我们用S1和S2表示两个波源,P表示空间任意一点。

当振源的振动方向相同时,令振源S1的振动方程为y1 = A1cosωt ,振源S1的振动方程为y2 = A2cosωt ,则在空间P点(距S1为r1 ,距S2为r2),两振源引起的分振动分别是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P点便出现两个频率相同、初相不同的振动叠加问题(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根据前面已经做过的讨论,有

r2 ? r1 = kλ时(k = 0,±1,±2,…),P点振动加强,振幅为A1 + A2 

r2 ? r1 =(2k ? 1)时(k = 0,±1,±2,…),P点振动削弱,振幅为│A1-A2│。

4、波的反射、折射和衍射

知识点和高考要求相同。

5、多普勒效应

当波源或者接受者相对与波的传播介质运动时,接收者会发现波的频率发生变化。多普勒效应的定量讨论可以分为以下三种情况(在讨论中注意:波源的发波频率f和波相对介质的传播速度v是恒定不变的)——

a、只有接收者相对介质运动(如图3所示)

设接收者以速度v1正对静止的波源运动。

如果接收者静止在A点,他单位时间接收的波的个数为f ,

当他迎着波源运动时,设其在单位时间到达B点,则= v1 ,、

在从A运动到B的过程中,接收者事实上“提前”多接收到了n个波

n = 

显然,在单位时间内,接收者接收到的总的波的数目为:f + n = f ,这就是接收者发现的频率f。即

f

显然,如果v1背离波源运动,只要将上式中的v1代入负值即可。如果v1的方向不是正对S ,只要将v1出正对的分量即可。

b、只有波源相对介质运动(如图4所示)

设波源以速度v2正对静止的接收者运动。

如果波源S不动,在单位时间内,接收者在A点应接收f个波,故S到A的距离:= fλ 

在单位时间内,S运动至S′,即= v2 。由于波源的运动,事实造成了S到A的f个波被压缩在了S′到A的空间里,波长将变短,新的波长

λ′= 

而每个波在介质中的传播速度仍为v ,故“被压缩”的波(A接收到的波)的频率变为

f2 = 

当v2背离接收者,或有一定夹角的讨论,类似a情形。

c、当接收者和波源均相对传播介质运动

当接收者正对波源以速度v1(相对介质速度)运动,波源也正对接收者以速度v2(相对介质速度)运动,我们的讨论可以在b情形的过程上延续…

f3 =  f2 = 

关于速度方向改变的问题,讨论类似a情形。

6、声波

a、乐音和噪音

b、声音的三要素:音调、响度和音品

c、声音的共鸣

第二讲 重要模型与专题

一、简谐运动的证明与周期计算

物理情形:如图5所示,将一粗细均匀、两边开口的U型管固定,其中装有一定量的水银,汞柱总长为L 。当水银受到一个初始的扰动后,开始在管中振动。忽略管壁对汞的阻力,试证明汞柱做简谐运动,并求其周期。

模型分析:对简谐运动的证明,只要以汞柱为对象,看它的回复力与位移关系是否满足定义式①,值得注意的是,回复力系指振动方向上的合力(而非整体合力)。当简谐运动被证明后,回复力系数k就有了,求周期就是顺理成章的事。

本题中,可设汞柱两端偏离平衡位置的瞬时位移为x 、水银密度为ρ、U型管横截面积为S ,则次瞬时的回复力

ΣF = ρg2xS = x

由于L、m为固定值,可令: = k ,而且ΣF与x的方向相反,故汞柱做简谐运动。

周期T = 2π= 2π

答:汞柱的周期为2π 。

学生活动:如图6所示,两个相同的柱形滚轮平行、登高、水平放置,绕各自的轴线等角速、反方向地转动,在滚轮上覆盖一块均质的木板。已知两滚轮轴线的距离为L 、滚轮与木板之间的动摩擦因素为μ、木板的质量为m ,且木板放置时,重心不在两滚轮的正中央。试证明木板做简谐运动,并求木板运动的周期。

思路提示:找平衡位置(木板重心在两滚轮中央处)→ú力矩平衡和Σ?F6= 0结合求两处弹力→ú求摩擦力合力…

答案:木板运动周期为2π 。

巩固应用:如图7所示,三根长度均为L = 2.00m地质量均匀直杆,构成一正三角形框架ABC,C点悬挂在一光滑水平轴上,整个框架可绕转轴转动。杆AB是一导轨,一电动松鼠可在导轨上运动。现观察到松鼠正在导轨上运动,而框架却静止不动,试讨论松鼠的运动是一种什么样的运动。

解说:由于框架静止不动,松鼠在竖直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。设松鼠的质量为m ,即:

N = mg                            ①

再回到框架,其静止平衡必满足框架所受合力矩为零。以C点为转轴,形成力矩的只有松鼠的压力N、和松鼠可能加速的静摩擦力f ,它们合力矩为零,即:

MN = Mf

现考查松鼠在框架上的某个一般位置(如图7,设它在导轨方向上距C点为x),上式即成:

N·x = f·Lsin60°                 ②

解①②两式可得:f = x ,且f的方向水平向左。

根据牛顿第三定律,这个力就是松鼠在导轨方向上的合力。如果我们以C在导轨上的投影点为参考点,x就是松鼠的瞬时位移。再考虑到合力与位移的方向因素,松鼠的合力与位移满足关系——

= -k

其中k =  ,对于这个系统而言,k是固定不变的。

显然这就是简谐运动的定义式。

答案:松鼠做简谐运动。

评说:这是第十三届物理奥赛预赛试题,问法比较模糊。如果理解为定性求解,以上答案已经足够。但考虑到原题中还是有定量的条件,所以做进一步的定量运算也是有必要的。譬如,我们可以求出松鼠的运动周期为:T = 2π = 2π = 2.64s 。

二、典型的简谐运动

1、弹簧振子

物理情形:如图8所示,用弹性系数为k的轻质弹簧连着一个质量为m的小球,置于倾角为θ

查看答案和解析>>

Ⅰ.某同学在做测定木块与木板间动摩擦因数的实验过程中,测滑动摩擦力时,他设计了两种实验方案.
方案一:木板固定在水平面上,用弹簧测力计水平拉动木块,如图甲所示.
方案二:用弹簧测力计水平地钩住木块,用力使木板在水平面上运动,如图乙所示.

除了实验必需的弹簧测力计、木块、木板、细线外,该同学还准备了若干重均为2.00N的砝码.
(1)上述两种方案中,你认为更合理的方案是
(填“甲”或“乙”),理由是:(回答一个理由即可)
图乙中固定弹簧测力计,拉动木板做相对运动,更容易控制拉动的速度,使示数更稳定,测量更准确
图乙中固定弹簧测力计,拉动木板做相对运动,更容易控制拉动的速度,使示数更稳定,测量更准确

(2)该同学在木块上加砝码,改变木块对木板的压力,记录了5组实验数据,如下表所示.
实验次序 1 2 3 4 5
砝码个数 0 1 2 3 4
砝码对木块
的压力/N
0 2.00 4.00 6.00 8.00
测力计示
数/N
1.50 2.00 2.50 2.95 3.50
木块受到的
摩擦力/N
1.50 2.00 2.50 2.95 3.50
请根据上述数据,在坐标纸上作出木块受到的摩擦力f和砝码对木块的压力F的关系图象(以F为横坐标).由图象可知,重为
6.00
6.00
N;木块与木板间的动摩擦因数为
0.25
0.25

Ⅱ.某实验小组利用如图甲所示的实验装置来验证钩码和滑块所组成的系统由静止释放后机械能是否守恒.实验前已经调整气垫导轨底座使之水平,且选定滑块从静止开始运动的过程进行测量.

(1)如图乙所示,用游标卡尺测得窄遮光条的宽度d=
0.48
0.48
cm;实验时将滑块从图示位置由静止释放,由数字计时器读出遮光条通过光电门的时间△t=1.2×10-2s,则在遮光条经过光电门时滑块的瞬间速度为
0.40
0.40
m/s.
(2)已知当地重力加速度为g,钩码的质量为m,滑块的质量为M,在本实验中还需要直接测量的物理量有:
B
B

A.光电门到导轨左端定滑轮的距离x
B.滑块上的遮光条初始位置到光电门的距离s
C.气垫导轨的总长L
(3)本实验通过比较
mgs
mgs
1
2
(m+M)(
d
△t
)2
是否相等(用直接测出的物理量符号写出表达式,重力加速度为g)说明系统的机械能是否守恒.
(4)为提高实验结果的准确程度,该实验小组的同学对此实验提出以下建议,其中确实对提高准确程度有作用的是
A
A

A.绳的质量要轻,滑轮的质量要轻
B.在“轻质绳”的前提下,绳越长越好
C.钩码的质量m越小越好
(5)你还有其他好的建议是
摩擦力做功对实验有影响,减小摩擦力能提供精确度.
摩擦力做功对实验有影响,减小摩擦力能提供精确度.

查看答案和解析>>

(8分)有两个物理兴趣小组在一次探究活动中,想测量滑块和长木板之间的动摩擦因数。

⑴第一小组:利用平衡条件来测量动摩擦因数。

该小组同学设计了两种实验方案:

方案A:长木板固定,用弹簧秤拉动木块,如图甲所示;

方案B:木块通过弹簧秤连接到墙壁,用手拉动木板,如图乙所示。

①上述两种方案中,你认为更合理的方案是           (填“A”或“B”),原因是              

②该实验中应测量的物理量是                   ,滑块和长木板之间的动摩擦因数μ=        

⑵第二小组:利用牛顿第二定律来测量动摩擦因数。

实验装置如图丙所示,一端装有定滑轮的、表面粗糙的长木板固定在水平实验台上,长木板上有一滑块,滑块右侧固定一轻小动滑轮,钩码和弹簧测力计通过绕在滑轮上的水平轻绳相连,放开钩码,滑块在长木板上做匀加速直线运动。

实验时滑块加速运动,读出弹簧测力计的示数F ′,处理纸带,得到滑块运动的加速度a;改变钩码个数,重复实验;以弹簧测力计的示数F ′为纵轴,加速度a为横轴,得到的图象是纵轴截距大小等于b的一条倾斜直线,如图丁所示。已知滑块和轻小动滑轮的总质量为m,重力加速度为g,忽略滑轮与轻绳之间的摩擦。则滑块和长木板之间的动摩擦因数μ=        

 

查看答案和解析>>

(8分)有两个物理兴趣小组在一次探究活动中,想测量滑块和长木板之间的动摩擦因数。
⑴第一小组:利用平衡条件来测量动摩擦因数。
该小组同学设计了两种实验方案:
方案A:长木板固定,用弹簧秤拉动木块,如图甲所示;
方案B:木块通过弹簧秤连接到墙壁,用手拉动木板,如图乙所示。

①上述两种方案中,你认为更合理的方案是          (填“A”或“B”),原因是              
②该实验中应测量的物理量是                  ,滑块和长木板之间的动摩擦因数μ=        
⑵第二小组:利用牛顿第二定律来测量动摩擦因数。
实验装置如图丙所示,一端装有定滑轮的、表面粗糙的长木板固定在水平实验台上,长木板上有一滑块,滑块右侧固定一轻小动滑轮,钩码和弹簧测力计通过绕在滑轮上的水平轻绳相连,放开钩码,滑块在长木板上做匀加速直线运动。

实验时滑块加速运动,读出弹簧测力计的示数F′,处理纸带,得到滑块运动的加速度a;改变钩码个数,重复实验;以弹簧测力计的示数F′为纵轴,加速度a为横轴,得到的图象是纵轴截距大小等于b的一条倾斜直线,如图丁所示。已知滑块和轻小动滑轮的总质量为m,重力加速度为g,忽略滑轮与轻绳之间的摩擦。则滑块和长木板之间的动摩擦因数μ=        

查看答案和解析>>


同步练习册答案