如图4所示.用弹性小球做成的四个单摆.当摆线竖直时.小球依次互相接触.且在同一水平线上.小球质量均为m.摆长由A到D逐渐增大.D的摆长是A摆长的2倍.A摆的振动周期为T.现将A摆球拉离平衡位置一小角度.松手后.A摆球沿其它摆球的连线所在竖直面内摆动.则它们做简谐运动的周期为 A.仍为T B. 大约为1.5T C. 大约为1.2T D. 大约为2T 图4 查看更多

 

题目列表(包括答案和解析)

精英家教网(I)某小组探究弹簧的弹性势能与弹簧形变之间的关系,采用如图所示的实验装置.将轻弹簧放置在水平轨道上,A端固定在轨道的一端,B端自由.在桌边缘悬挂有一重锤线.取一个小球置于弹簧的B端,用手推小球使弹簧压缩,放手后小球被弹出做平抛运动.利用该装置可以粗略探究弹簧压缩时具有的弹性势能与压缩量之间的关系.实验中,得到弹簧压缩量x和小球离开桌面后的水平位移s的一些数据如下表所示.
次数 l 2 3 4
x/cm 2.00 3.00 4.O0 5.00
s/cm 10.15 15.13 20.16 25.14
①该实验在测定弹簧的弹性势能时,所采用的方法是
 

A.控制变量法B.间接测量法C.累积测量法  D.类比法
②分析表电的数据可得结论是:
A.在误差允许的范围内,对于给定的弹簧,其弹性势能与其压缩量的比例关系是:
 

B.当压缩量x越大时,上述比例关系的误差也越大,其原因是:
 

(II)为了探究光敏电阻的阻值随光照强度变化的规律,一同学要测定光敏电阻在不同强度的光照射下的电阻值.该同学使用的实验器材如下:
A.光敏电阻R,其阻值大于20Ω;
B.电压表精英家教网,量程4.5V,内阻约2kΩ;
C.电流表精英家教网,量程0.6A,内阻为0.1Ω;
D.滑动变阻器R′,阻值范围0~20Ω;
E.电源E,电动势4.5V,内阻未知;
F.标有“4.5V,0.2A”的小灯泡一只;
G.电键K一只,导线若干;
该同学已消除了外部环境的光线对光敏电阻的影响,即照射在光敏电阻上的光线全部来自于小灯泡.实验时,在正确连接实验电路后,使小灯泡与光敏电阻间保持一定距离,并通过调节滑动变阻器,分别精确测出灯泡不亮、微亮、较亮、最亮四种条件下的光敏电阻值.实验数据如下:
小灯泡亮度 电压U/V 电流I/A 光敏电阻值R/Ω(取3位有效数字)
不亮 4.40 0
微亮 4.32 0.11 39.2
较亮 4.24 0.21
最亮 4.10 0.40
a、存上面的表格中填出不同亮度灯光照射下的光敏电阻值;
b、清存下面的方框中画出该同学完成该实验的电路图,并按电路图进行实物连接;
精英家教网

查看答案和解析>>

(1)一轻弹簧原长为10cm,把它上端固定,下端悬挂一重为0.5N的钩码,静止时它的长度为12cm,弹簧的劲度系数为
 
N/m;现有一个带有半径为14cm的
1
4
光滑圆弧的物块静止放在水平面上,半径OA水平,OB竖直,如图1所示;将上述轻弹簧的一端拴在A点,另一端拴着一个小球,发现小球静止在圆弧上的P点,且∠BOP=30°,则小球重为
 
N.
(2)用游标卡尺测量某圆柱形金属工件的直径,其示数如图2所示,该工件的直径为
 
mm.
精英家教网
(3)用如图3所示的装置做“描绘小灯泡的伏安特性曲线”实验.小灯泡的规格为(4.5V0.3A);电流表有0.6A和3A两个量程;电压表有3V和15V两个量程.
将以下实验步骤补充完整:
A.按如图3所示方式连接好电路,其中电流表选用0.6A的量程;电压表选用3V的量程;
B.将滑动变阻器的滑片移动到最
 
端;
C.闭合电键,移动滑动变阻器滑片的位置,在0~3.0V内测出6组不同的电压U和对应的电流I的值,并将测量数据填入表格;
D.打开电键,
 

E.闭合电键,移动滑动变阻器滑片的位置,在3.0~4.5V之间测出6组不同的电压U和对应的电流I的值,并将测量数据填入表格;断开电键;
F.在坐标纸上以U为横轴,I为纵轴,建立坐标系;
G.在坐标系内描出各组数据所对应的点,用平滑曲线拟合这些点;
H.拆除电路,整理仪器.
(4)某学习小组采用如图5所示的装置做“验证动能定理”实验,小车运动中所受阻力f已提前测得.
①某次实验中,在小桶中加入适当砝码使小车做加速运动,打点计时器打出的纸带如图5所示,通过正确的方法得出了打1、2两点时小车的速度大小分别为v1、v2,两点间的距离为L,设小车的质量为M,小桶和砝码的总质量为m,某同学按如下思路验证动能定理:以小车为研究对象,合外力的功为W=mgL-fL,动能增量为Ek=
1
2
M(
v
2
2
-
v
2
1
)
,经多次实验后,他发现W总是大于△Ek,你认为产生这种误差的原因是
 

②为了减小或消除以上误差,同学们提出了以下四种改进方案,你认为有效的是
 
(填选项字母).
A.使小桶和砝码的总质量m远小于小车的质量M
B.换用水平气垫导轨结合光电计时器做实验,验证mgL是否等于
1
2
M(
v
2
2
-
v
2
1
)

C.设法得出轻细绳的拉力T,验证TL-fL是否等于
1
2
M(
v
2
2
-
v
2
1
)

D.研究小车、小桶及砝码组成的系统,验证mgL-fL是否等于
1
2
(M+m)(
v
2
2
-
v
2
1
)

查看答案和解析>>

(1)一轻弹簧原长为10cm,把它上端固定,下端悬挂一重为0.5N的钩码,静止时它的长度为12cm,弹簧的劲度系数为______N/m;现有一个带有半径为14cm的
1
4
光滑圆弧的物块静止放在水平面上,半径OA水平,OB竖直,如图1所示;将上述轻弹簧的一端拴在A点,另一端拴着一个小球,发现小球静止在圆弧上的P点,且∠BOP=30°,则小球重为______N.
(2)用游标卡尺测量某圆柱形金属工件的直径,其示数如图2所示,该工件的直径为______mm.

精英家教网

(3)用如图3所示的装置做“描绘小灯泡的伏安特性曲线”实验.小灯泡的规格为(4.5V0.3A);电流表有0.6A和3A两个量程;电压表有3V和15V两个量程.
将以下实验步骤补充完整:
A.按如图3所示方式连接好电路,其中电流表选用0.6A的量程;电压表选用3V的量程;
B.将滑动变阻器的滑片移动到最______端;
C.闭合电键,移动滑动变阻器滑片的位置,在0~3.0V内测出6组不同的电压U和对应的电流I的值,并将测量数据填入表格;
D.打开电键,______;
E.闭合电键,移动滑动变阻器滑片的位置,在3.0~4.5V之间测出6组不同的电压U和对应的电流I的值,并将测量数据填入表格;断开电键;
F.在坐标纸上以U为横轴,I为纵轴,建立坐标系;
G.在坐标系内描出各组数据所对应的点,用平滑曲线拟合这些点;
H.拆除电路,整理仪器.
(4)某学习小组采用如图5所示的装置做“验证动能定理”实验,小车运动中所受阻力f已提前测得.
①某次实验中,在小桶中加入适当砝码使小车做加速运动,打点计时器打出的纸带如图5所示,通过正确的方法得出了打1、2两点时小车的速度大小分别为v1、v2,两点间的距离为L,设小车的质量为M,小桶和砝码的总质量为m,某同学按如下思路验证动能定理:以小车为研究对象,合外力的功为W=mgL-fL,动能增量为Ek=
1
2
M(
v22
-
v21
)
,经多次实验后,他发现W总是大于△Ek,你认为产生这种误差的原因是______;
②为了减小或消除以上误差,同学们提出了以下四种改进方案,你认为有效的是______(填选项字母).
A.使小桶和砝码的总质量m远小于小车的质量M
B.换用水平气垫导轨结合光电计时器做实验,验证mgL是否等于
1
2
M(
v22
-
v21
)

C.设法得出轻细绳的拉力T,验证TL-fL是否等于
1
2
M(
v22
-
v21
)

D.研究小车、小桶及砝码组成的系统,验证mgL-fL是否等于
1
2
(M+m)(
v22
-
v21
)

查看答案和解析>>

第一部分  力&物体的平衡

第一讲 力的处理

一、矢量的运算

1、加法

表达: +  =  

名词:为“和矢量”。

法则:平行四边形法则。如图1所示。

和矢量大小:c =  ,其中α为的夹角。

和矢量方向:之间,和夹角β= arcsin

2、减法

表达: =  

名词:为“被减数矢量”,为“减数矢量”,为“差矢量”。

法则:三角形法则。如图2所示。将被减数矢量和减数矢量的起始端平移到一点,然后连接两时量末端,指向被减数时量的时量,即是差矢量。

差矢量大小:a =  ,其中θ为的夹角。

差矢量的方向可以用正弦定理求得。

一条直线上的矢量运算是平行四边形和三角形法则的特例。

例题:已知质点做匀速率圆周运动,半径为R ,周期为T ,求它在T内和在T内的平均加速度大小。

解说:如图3所示,A到B点对应T的过程,A到C点对应T的过程。这三点的速度矢量分别设为

根据加速度的定义 得:

由于有两处涉及矢量减法,设两个差矢量   ,根据三角形法则,它们在图3中的大小、方向已绘出(的“三角形”已被拉伸成一条直线)。

本题只关心各矢量的大小,显然:

 =  =  =  ,且: =   = 2

所以: =  =   =  =  

(学生活动)观察与思考:这两个加速度是否相等,匀速率圆周运动是不是匀变速运动?

答:否;不是。

3、乘法

矢量的乘法有两种:叉乘和点乘,和代数的乘法有着质的不同。

⑴ 叉乘

表达:× = 

名词:称“矢量的叉积”,它是一个新的矢量。

叉积的大小:c = absinα,其中α为的夹角。意义:的大小对应由作成的平行四边形的面积。

叉积的方向:垂直确定的平面,并由右手螺旋定则确定方向,如图4所示。

显然,××,但有:×= -×

⑵ 点乘

表达:· = c

名词:c称“矢量的点积”,它不再是一个矢量,而是一个标量。

点积的大小:c = abcosα,其中α为的夹角。

二、共点力的合成

1、平行四边形法则与矢量表达式

2、一般平行四边形的合力与分力的求法

余弦定理(或分割成RtΔ)解合力的大小

正弦定理解方向

三、力的分解

1、按效果分解

2、按需要——正交分解

第二讲 物体的平衡

一、共点力平衡

1、特征:质心无加速度。

2、条件:Σ = 0 ,或  = 0 , = 0

例题:如图5所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹角在图上已标示,求横杆的重心位置。

解说:直接用三力共点的知识解题,几何关系比较简单。

答案:距棒的左端L/4处。

(学生活动)思考:放在斜面上的均质长方体,按实际情况分析受力,斜面的支持力会通过长方体的重心吗?

解:将各处的支持力归纳成一个N ,则长方体受三个力(G 、f 、N)必共点,由此推知,N不可能通过长方体的重心。正确受力情形如图6所示(通常的受力图是将受力物体看成一个点,这时,N就过重心了)。

答:不会。

二、转动平衡

1、特征:物体无转动加速度。

2、条件:Σ= 0 ,或ΣM+ =ΣM- 

如果物体静止,肯定会同时满足两种平衡,因此用两种思路均可解题。

3、非共点力的合成

大小和方向:遵从一条直线矢量合成法则。

作用点:先假定一个等效作用点,然后让所有的平行力对这个作用点的和力矩为零。

第三讲 习题课

1、如图7所示,在固定的、倾角为α斜面上,有一块可以转动的夹板(β不定),夹板和斜面夹着一个质量为m的光滑均质球体,试求:β取何值时,夹板对球的弹力最小。

解说:法一,平行四边形动态处理。

对球体进行受力分析,然后对平行四边形中的矢量G和N1进行平移,使它们构成一个三角形,如图8的左图和中图所示。

由于G的大小和方向均不变,而N1的方向不可变,当β增大导致N2的方向改变时,N2的变化和N1的方向变化如图8的右图所示。

显然,随着β增大,N1单调减小,而N2的大小先减小后增大,当N2垂直N1时,N2取极小值,且N2min = Gsinα。

法二,函数法。

看图8的中间图,对这个三角形用正弦定理,有:

 =  ,即:N2 =  ,β在0到180°之间取值,N2的极值讨论是很容易的。

答案:当β= 90°时,甲板的弹力最小。

2、把一个重为G的物体用一个水平推力F压在竖直的足够高的墙壁上,F随时间t的变化规律如图9所示,则在t = 0开始物体所受的摩擦力f的变化图线是图10中的哪一个?

解说:静力学旨在解决静态问题和准静态过程的问题,但本题是一个例外。物体在竖直方向的运动先加速后减速,平衡方程不再适用。如何避开牛顿第二定律,是本题授课时的难点。

静力学的知识,本题在于区分两种摩擦的不同判据。

水平方向合力为零,得:支持力N持续增大。

物体在运动时,滑动摩擦力f = μN ,必持续增大。但物体在静止后静摩擦力f′≡ G ,与N没有关系。

对运动过程加以分析,物体必有加速和减速两个过程。据物理常识,加速时,f < G ,而在减速时f > G 。

答案:B 。

3、如图11所示,一个重量为G的小球套在竖直放置的、半径为R的光滑大环上,另一轻质弹簧的劲度系数为k ,自由长度为L(L<2R),一端固定在大圆环的顶点A ,另一端与小球相连。环静止平衡时位于大环上的B点。试求弹簧与竖直方向的夹角θ。

解说:平行四边形的三个矢量总是可以平移到一个三角形中去讨论,解三角形的典型思路有三种:①分割成直角三角形(或本来就是直角三角形);②利用正、余弦定理;③利用力学矢量三角形和某空间位置三角形相似。本题旨在贯彻第三种思路。

分析小球受力→矢量平移,如图12所示,其中F表示弹簧弹力,N表示大环的支持力。

(学生活动)思考:支持力N可不可以沿图12中的反方向?(正交分解看水平方向平衡——不可以。)

容易判断,图中的灰色矢量三角形和空间位置三角形ΔAOB是相似的,所以:

                                   ⑴

由胡克定律:F = k(- R)                ⑵

几何关系:= 2Rcosθ                     ⑶

解以上三式即可。

答案:arccos 。

(学生活动)思考:若将弹簧换成劲度系数k′较大的弹簧,其它条件不变,则弹簧弹力怎么变?环的支持力怎么变?

答:变小;不变。

(学生活动)反馈练习:光滑半球固定在水平面上,球心O的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图13所示的A位置开始缓慢拉至B位置。试判断:在此过程中,绳子的拉力T和球面支持力N怎样变化?

解:和上题完全相同。

答:T变小,N不变。

4、如图14所示,一个半径为R的非均质圆球,其重心不在球心O点,先将它置于水平地面上,平衡时球面上的A点和地面接触;再将它置于倾角为30°的粗糙斜面上,平衡时球面上的B点与斜面接触,已知A到B的圆心角也为30°。试求球体的重心C到球心O的距离。

解说:练习三力共点的应用。

根据在平面上的平衡,可知重心C在OA连线上。根据在斜面上的平衡,支持力、重力和静摩擦力共点,可以画出重心的具体位置。几何计算比较简单。

答案:R 。

(学生活动)反馈练习:静摩擦足够,将长为a 、厚为b的砖块码在倾角为θ的斜面上,最多能码多少块?

解:三力共点知识应用。

答: 。

4、两根等长的细线,一端拴在同一悬点O上,另一端各系一个小球,两球的质量分别为m1和m2 ,已知两球间存在大小相等、方向相反的斥力而使两线张开一定角度,分别为45和30°,如图15所示。则m1 : m2??为多少?

解说:本题考查正弦定理、或力矩平衡解静力学问题。

对两球进行受力分析,并进行矢量平移,如图16所示。

首先注意,图16中的灰色三角形是等腰三角形,两底角相等,设为α。

而且,两球相互作用的斥力方向相反,大小相等,可用同一字母表示,设为F 。

对左边的矢量三角形用正弦定理,有:

 =          ①

同理,对右边的矢量三角形,有: =                                ②

解①②两式即可。

答案:1 : 。

(学生活动)思考:解本题是否还有其它的方法?

答:有——将模型看成用轻杆连成的两小球,而将O点看成转轴,两球的重力对O的力矩必然是平衡的。这种方法更直接、简便。

应用:若原题中绳长不等,而是l1 :l2 = 3 :2 ,其它条件不变,m1与m2的比值又将是多少?

解:此时用共点力平衡更加复杂(多一个正弦定理方程),而用力矩平衡则几乎和“思考”完全相同。

答:2 :3 。

5、如图17所示,一个半径为R的均质金属球上固定着一根长为L的轻质细杆,细杆的左端用铰链与墙壁相连,球下边垫上一块木板后,细杆恰好水平,而木板下面是光滑的水平面。由于金属球和木板之间有摩擦(已知摩擦因素为μ),所以要将木板从球下面向右抽出时,至少需要大小为F的水平拉力。试问:现要将木板继续向左插进一些,至少需要多大的水平推力?

解说:这是一个典型的力矩平衡的例题。

以球和杆为对象,研究其对转轴O的转动平衡,设木板拉出时给球体的摩擦力为f ,支持力为N ,重力为G ,力矩平衡方程为:

f R + N(R + L)= G(R + L)           

球和板已相对滑动,故:f = μN        ②

解①②可得:f = 

再看木板的平衡,F = f 。

同理,木板插进去时,球体和木板之间的摩擦f′=  = F′。

答案: 

第四讲 摩擦角及其它

一、摩擦角

1、全反力:接触面给物体的摩擦力与支持力的合力称全反力,一般用R表示,亦称接触反力。

2、摩擦角:全反力与支持力的最大夹角称摩擦角,一般用φm表示。

此时,要么物体已经滑动,必有:φm = arctgμ(μ为动摩擦因素),称动摩擦力角;要么物体达到最大运动趋势,必有:φms = arctgμs(μs为静摩擦因素),称静摩擦角。通常处理为φm = φms 

3、引入全反力和摩擦角的意义:使分析处理物体受力时更方便、更简捷。

二、隔离法与整体法

1、隔离法:当物体对象有两个或两个以上时,有必要各个击破,逐个讲每个个体隔离开来分析处理,称隔离法。

在处理各隔离方程之间的联系时,应注意相互作用力的大小和方向关系。

2、整体法:当各个体均处于平衡状态时,我们可以不顾个体的差异而讲多个对象看成一个整体进行分析处理,称整体法。

应用整体法时应注意“系统”、“内力”和“外力”的涵义。

三、应用

1、物体放在水平面上,用与水平方向成30°的力拉物体时,物体匀速前进。若此力大小不变,改为沿水平方向拉物体,物体仍能匀速前进,求物体与水平面之间的动摩擦因素μ。

解说:这是一个能显示摩擦角解题优越性的题目。可以通过不同解法的比较让学生留下深刻印象。

法一,正交分解。(学生分析受力→列方程→得结果。)

法二,用摩擦角解题。

引进全反力R ,对物体两个平衡状态进行受力分析,再进行矢量平移,得到图18中的左图和中间图(注意:重力G是不变的,而全反力R的方向不变、F的大小不变),φm指摩擦角。

再将两图重叠成图18的右图。由于灰色的三角形是一个顶角为30°的等腰三角形,其顶角的角平分线必垂直底边……故有:φm = 15°。

最后,μ= tgφm 

答案:0.268 。

(学生活动)思考:如果F的大小是可以选择的,那么能维持物体匀速前进的最小F值是多少?

解:见图18,右图中虚线的长度即Fmin ,所以,Fmin = Gsinφm 

答:Gsin15°(其中G为物体的重量)。

2、如图19所示,质量m = 5kg的物体置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物体,使物体能够沿斜面向上匀速运动,而斜面体始终静止。已知斜面的质量M = 10kg ,倾角为30°,重力加速度g = 10m/s2 ,求地面对斜面体的摩擦力大小。

解说:

本题旨在显示整体法的解题的优越性。

法一,隔离法。简要介绍……

法二,整体法。注意,滑块和斜面随有相对运动,但从平衡的角度看,它们是完全等价的,可以看成一个整体。

做整体的受力分析时,内力不加考虑。受力分析比较简单,列水平方向平衡方程很容易解地面摩擦力。

答案:26.0N 。

(学生活动)地面给斜面体的支持力是多少?

解:略。

答:135N 。

应用:如图20所示,一上表面粗糙的斜面体上放在光滑的水平地面上,斜面的倾角为θ。另一质量为m的滑块恰好能沿斜面匀速下滑。若用一推力F作用在滑块上,使之能沿斜面匀速上滑,且要求斜面体静止不动,就必须施加一个大小为P = 4mgsinθcosθ的水平推力作用于斜面体。使满足题意的这个F的大小和方向。

解说:这是一道难度较大的静力学题,可以动用一切可能的工具解题。

法一:隔离法。

由第一个物理情景易得,斜面于滑块的摩擦因素μ= tgθ

对第二个物理情景,分别隔离滑块和斜面体分析受力,并将F沿斜面、垂直斜面分解成Fx和Fy ,滑块与斜面之间的两对相互作用力只用两个字母表示(N表示正压力和弹力,f表示摩擦力),如图21所示。

对滑块,我们可以考查沿斜面方向和垂直斜面方向的平衡——

Fx = f + mgsinθ

Fy + mgcosθ= N

且 f = μN = Ntgθ

综合以上三式得到:

Fx = Fytgθ+ 2mgsinθ               ①

对斜面体,只看水平方向平衡就行了——

P = fcosθ+ Nsinθ

即:4mgsinθcosθ=μNcosθ+ Nsinθ

代入μ值,化简得:Fy = mgcosθ      ②

②代入①可得:Fx = 3mgsinθ

最后由F =解F的大小,由tgα= 解F的方向(设α为F和斜面的夹角)。

答案:大小为F = mg,方向和斜面夹角α= arctg()指向斜面内部。

法二:引入摩擦角和整体法观念。

仍然沿用“法一”中关于F的方向设置(见图21中的α角)。

先看整体的水平方向平衡,有:Fcos(θ- α) = P                                   ⑴

再隔离滑块,分析受力时引进全反力R和摩擦角φ,由于简化后只有三个力(R、mg和F),可以将矢量平移后构成一个三角形,如图22所示。

在图22右边的矢量三角形中,有: =      ⑵

注意:φ= arctgμ= arctg(tgθ) = θ                                              ⑶

解⑴⑵⑶式可得F和α的值。

查看答案和解析>>

 【选做题】本题包括A、B、C三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若三题都做,则按A、B两题评分.

A.(选修模块3—3)(12分)

(1)在研究性学习的过程中,针对能源问题,大气污染问题同学们提出了如下四个活动方案,哪些从理论上讲是可行的

(A)发明一种制冷设备,使温度降至绝对零度以下

(B)汽车尾气中各类有害气体排入大气后严重污染了空气,想办法使它们自发地分离,既清洁了空气,又变废为宝

(C)某国际科研小组正在研制利用超导材料制成灯泡的灯丝和闭合电路.利用电磁感应激起电流后,由于电路电阻为零从而使灯泡一直发光

(D)由于太阳的照射,海洋表面的温度可达30℃左右,而海洋深处的温度要低得多,在水600~1000m的地方,水温约为4℃.据此,科学家研制了一种抗腐蚀的热交换器,利用海水温差发电

(2)秋天附着在树叶上的露水常呈球形,.这是因为________.水银放在某一固体容器中,其液面向下弯,说明水银_____这种固体(填“浸润”或“ 不浸润”).

(3)如图所示,在竖直放置绝热圆柱形容器内用质量为m的绝热活塞密封一部分气体,活塞与容器壁间能无摩擦滑动,容器的横截面积为S,开始时密闭气体的温度为T0,活塞与容器底的距离为h0.现将整个装置放在大气压恒为P0的空气中,当气体从外界吸收热量Q后,活塞缓慢上升d后再次平衡,问:

①此时密闭气体的温度是多少?

②在此过程中密闭气体的内能增加了多少?

B.(选修模块3—4)(12分)

(1)下列说法中正确的有      

(A)2010年4月14日早晨7时49分,青海省玉树藏族自治州玉树县发生7.1级地震,造成重大人员财产损失,地震波是机械波,地震波中既有横波也有纵波

(B)太阳能真空玻璃管采用镀膜技术增加透射光,这是利用了光的衍射原理

(C)相对论认为:真空中的光速在不同惯性参照系中是不相同的

(D)医院里用于检测的“彩超”的原理是:向病人体内发射超声波,经血  

液反射后被接收,测出反射波的频率变化,就可知血液的流速.这 

一技术应用了多普勒效应

(2)如图所示为一列简谐波在t1=0时刻的图象,此时波中质点M的运动方   

向沿y轴负方向,且到t2=0.55s质点M恰好第3次到达y轴正方向最大 

位移处,该波的传播方向为_____,波速为_______m/s.

(3)如图所示是一种折射率n=1.5的棱镜.现有一束光 线沿MN的方向射  

到棱镜的AB界面上,入射角的大小.求光在棱镜中传

播的速率及此束光线射出棱镜后的方向(不考虑返回到AB面上的光线).

C.(选修模块3—5)(12分)

(1)下列说法中正确的有_______.

(A)黑体辐射时电磁波的强度按波长的分布只与黑体的温度有关

(B)普朗克为了解释光电效应的规律,提出了光子说

(C)天然放射现象的发现揭示原子核有复杂的结构

(D)卢瑟福首先发现了质子和中子

(2)如图所示是使用光电管的原理图.当频率为v的可见光照射到阴极K上时,  

电流表中有电流通过.

  ①当变阻器的滑动端P        滑动时(填“左”或“右”),通过电流表的电流将会减小.

  ②当电流表电流刚减小到零时,电压表的读数为U,则光电子的最大初动能为

           (已知电子电荷量为e).

  ③如果不改变入射光的频率,而增加入射光的强度,则光电子的最大初动能将_____

(填“增加”、“减小”或“不变”).

(3)一炮弹质量为m,以一定的倾角斜向上发射,到达最高点时速度为v,炮弹在最高点爆炸成两块,

其中一块恰好做自由落体运动,质量为.则另一块爆炸后瞬时的速度大小____。

 

 

查看答案和解析>>


同步练习册答案