6.如图4.电源内阻不能忽略.闭合S后.调节R的阻值使电压表示数增大△U.在这一过程中.有 A.通过R1的电流增大△U/R1 B.R2两端电压减小△U C.通过R2的电流减小量小于△U/R2 D.路端电压增大量为△U 查看更多

 

题目列表(包括答案和解析)

如图所示,光滑且足够长的平行金属导轨MNPQ固定在同一水平面上,两导轨间距l = 0.2m,电阻R1 = 0.4Ω,导轨上静止放置一质量m = 0.1kg、电阻R2  = 0.1Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B1 = 0.5T的匀强磁场中,磁场的方向竖直向下,现用一外力F沿水平方向拉杆,使之由静止起做匀加速运动并开始计时,若5s末杆的速度为2.5m/s,求:

(1)5s末时电阻R上消耗的电功率;

(2)5s末时外力F的功率.

(3)若杆最终以8 m/s的速度作匀速运动, 此时闭合电键S射线源Q释放的粒子经加速电场C加速后从a孔对着圆心O进入半径r = m的固定圆筒中(筒壁上的小孔a只能容一个粒子通过),圆筒内有垂直水平面向下的磁感应强度为B2的匀强磁场。粒子每次与筒壁发生碰撞均无电荷迁移,也无机械能损失,粒子与圆筒壁碰撞5次后恰又从a孔背离圆心射出,忽略粒子进入加速电场的初速度,若粒子质量= 6.6×10-27 kg , 电量= 3.2×10-19 C, 则磁感应强度B2 多大?若不计碰撞时间,粒子在圆筒内运动的总时间多大?

查看答案和解析>>

如图所示,光滑且足够长的平行金属导轨MN和PQ固定在同一水平面上,两导轨间距离L=0.2m,电阻R1=0.4,导轨上静止放置一质量m=0.1kg,电阻R2=0.1的金属杆ab,导轨电阻忽略不计,整个装置处在磁感应强度B1=0.5T的匀强磁场中,磁场的方向竖直向下,现用一外力F沿水平方向拉杆ab,使之由静止开始运动,最终以8m/s的速度做匀速直线运动。若此时闭合开关S,释放的粒子经加速电场C加速从a孔对着圆心O进入半径r=的固定圆筒中(筒壁上的小孔a只能容一个粒子通过),圆筒内有垂直水平面向下的磁感应强度为B2的匀强磁场,粒子每次与筒壁发生碰撞均无电荷迁移,也无机械能损失。(粒子质量m≈6.4×10-23kg,电荷量q=3.2×10-19C)。求:

  

(1)ab杆做匀速直线运动过程中,外力F的功率;

(2)射线源Q是钍核发生衰变生成镭核

并粒出一个粒子,完成下列钍核的衰变方程    

(3)若粒子与圆筒壁碰撞5次后恰又从a孔背离圆心射出,忽略粒子进入加速电场的初速度,求磁感应强度B2

查看答案和解析>>

如图所示电路中,=4Ω,=6Ω,电源内阻不可忽略,当开关闭合时,电流表A的示数为3A,则当开关断开时,电流表示数可能为(  )

A.3.2 A   B.2.1A     C.1.2A    D.0.8A

小明同学选择的答案是B,而小华同学认为:当开关断开后,电路总电阻变大,电路总电流变小,因此,B、C、D三种情况都是可能的。你同意哪位同学的判断?并请你写出判断的依据及过程。

查看答案和解析>>

在如图所示的电路中,两平行正对金属板AB水平放置,两板间的距离d=4.0cm。电源电动势E=400V,内电阻r=20Ω,电阻R1=1980Ω。闭合开关S,待电路稳定后,将一带正电的小球(可视为质点)从B板上的小孔以初速度v0=1.0m/s竖直向上射入两板间,小球恰好能到达A板。若小球所带电荷量q=1.0×10-7C,质量m=2.0×10-4kg,不考虑空气阻力,忽略射入小球对电路的影响,取g=10m/s2。求:

1.AB两金属板间的电压的大小U

2.滑动变阻器消耗的电功率P

3.电源的效率η

 

查看答案和解析>>

在如图所示的电路中,两平行正对金属板A、B水平放置,两板间的距离d=4.0cm。电源电动势E=400V,内电阻r=20Ω,电阻R1=1980Ω。闭合开关S,待电路稳定后,将一带正电的小球(可视为质点)从B板上的小孔以初速度v0=1.0m/s竖直向上射入两板间,小球恰好能到达A板。若小球所带电荷量q=1.0×10-7C,质量m=2.0×10-4kg,不考虑空气阻力,忽略射入小球对电路的影响,取g=10m/s2。求:

1.A、B两金属板间的电压的大小U;

2.滑动变阻器消耗的电功率P

3.电源的效率η。

 

查看答案和解析>>


同步练习册答案