如图①.P为△ABC内一点.连接PA.PB.PC.在△PAB.△PBC和△PAC中.如果存在一个三角形与△ABC相似.那么就称P为△ABC的自相似点. (1)如图②.已知Rt△ABC中.∠ACB=90°.∠ABC>∠A.CD是AB上的中线.过点B作BE丄CD.垂足为E.试说明E是△ABC的自相似点, (2)在△ABC中.∠A<∠B<∠C. ①如图③.利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹), ②若△ABC的内心P是该三角形的自相似点.求该三角形三个内角的度数. 考点:相似三角形的判定与性质,直角三角形斜边上的中线,三角形的内切圆与内心,作图-复杂作图. 专题:作图题,几何综合题. 分析:(1)根据已知条件得出∠BEC=∠ACB.以及∠BCE=∠ABC.得出△BCE∽△ACB.即可得出结论, (2)①根据做一角等于已知角即可得出△ABC的自相似点, ②根据∠PBC=∠A.∠BCP=∠ABC=∠2∠PBC=2∠A.∠ACB=2∠BCP=4∠A.即可得出各内角的度数. 解答:解:(1)在Rt△ABC中.∠ACB=90°.CD是AB上的中线. ∴CD=AB. ∴CD=BD. ∴∠BCE=∠ABC. ∵BE⊥CD.∴∠BEC=90°. ∴∠BEC=∠ACB. ∴△BCE∽△ACB. ∴E是△ABC的自相似点, (2)①如图所示. 做法:①在∠ABC内.作∠CBD=∠A., ②在∠ACB内.作∠BCE=∠ABC.BD交CE于点P. 则P为△ABC的自相似点, ②∵P是△ABC的内心. ∴∠PBC=∠ABC.∠PCB=∠ACB. ∵∠PBC=∠A.∠BCP=∠ABC=∠2∠PBC=2∠A.∠ACB=2∠BCP=4∠A. ∴∠A+2∠A+4∠A=180°. ∴∠A=. ∴该三角形三个内角度数为:... 点评:此题主要考查了相似三角形的判定以及三角形的内心做法和做一角等于已知角.此题综合性较强.注意从已知分析获取正确的信息是解决问题的关键. 查看更多

 

题目列表(包括答案和解析)

(2013•松北区一模)如图,P为△ABC内一点,∠BAC=30°,∠ACB=90°,∠BPC=120°.若BP=
3
,则△PAB的面积为
3
3
2
3
3
2

查看答案和解析>>

(2013•邯郸一模)如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE.若AC=5,BC=3,则BD的长为(  )

查看答案和解析>>

(2009•普陀区一模)如图,D为△ABC内一点,E为△ABC外一点,且∠1=∠2,∠3=∠4.
证明:△ABC∽△DBE.

查看答案和解析>>

已知:如图,D为△ABC内一点,E为△ABC外一点,且∠1=∠2,∠3=∠4
求证:∠ACB=∠DEB.

查看答案和解析>>

精英家教网如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.
(1)四边形DEFG是什么四边形,请说明理由;
(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由.

查看答案和解析>>


同步练习册答案