题目列表(包括答案和解析)
已知二次函数y=x2+ax+a-2.
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.
(2)设a<0,当此函数图象与x轴的两个交点的距离为
时,求出此二次函数的解析式.
(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为
,若存在求出P点坐标,若不存在请说明理由.
已知:抛物线C1:y=ax2+4ax+4a-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
![]()
(1)
求抛物线的解析式和顶点P的坐标;(2)将抛物线沿
x轴翻折,再向右平移,平移后的抛物线C2的顶点为M,当点P、M关于点B成中心对称时,求平移后的抛物线C2的解析式;(3)直线y=-
x+m与抛物线C1、C2的对称轴分别交于点E、F,设由点E、P、F、M构成的四边形的面积为s,试用含m的代数式表示s.
已知:抛物线y=ax2-4ax+m与x轴的一个交点为A(1,0).
(1)求抛物线与x轴的另一个交点B的坐标;
(2)点C是抛物线与y轴的交点,且△ABC的面积为3,求此抛物线的解析式;
(3)点D是(2)中开口向下的抛物线的顶点.抛物线上点C的对称点为Q,把点D沿对称轴向下平移5个单位长度,设这个点为P;点M、N分别是x轴、y轴上的两个动点,当四边形PQMN的周长最短时,求PN+MN+QM的长.(结果保留根号)
已知:如图所示,反比例函数y=
与直线y=-x+2只有一个公共点P,则称P为切点.
(1)若反比例函数y=
与直线y=kx+6只有一个公共点M,求:当k<0时两个函数的解析式和切点M的坐标;
(2)设(1)问结论中的直线与x轴、y轴分别交于A、B两点.将∠ABO沿折痕AB翻折,设翻折后的OB边与x轴交于点C.
①直接写出点C的坐标;
②在经过A、B、C三点的抛物线的对称轴上是否存在一点P,使以P、O、M、C为顶点的四边形为梯形,若存在,求出点P的坐标;若不存在,请说明理由.
已知:如图所示的两条抛物线的解析式分别是y1=-ax2-ax+1,y2=ax2-ax-1(其中a为常数,且a>0).
(1)请写出三条与上述抛物线有关的不同类型的结论;
(2)当a=
时,设y1=-ax2-ax+1与x轴分别交于M,N两点(M在N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(E在F的左边),观察M,N,E,F四点坐标,请写出一个你所得到的正确结论,并说明理由;
(3)设上述两条抛物线相交于A,B两点,直线l,l1,l2都垂直于x轴,l1,l2分别经过A,B两点,l在直线l1,l2之间,且l与两条抛物线分别交于C,D两点,求线段CD的最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com